
ADC-16
Analog Input Board

User Guide

User Guide

for the

ADC-16

Analog Input

Board

Rev'sion B - December !992
Copyright Keithley Data Acquisition 1992

Part Number: 24446

KEITHLEY DATA ACQUISITION - Keithley MetraByte/Asyst

440 Myles Standish Blvd., Taunton, MA 02780
TEL. 5081880-3000, FAX 5081880-0179

... - 111 -

Warranty Information

All products manufactured by Keithley Data Acquisition are warranted
against defective materials and workmanship for a period of one year
from the date of delivery to the original purchaser. Any product that is
found to be defective within the warranty period will, at the option of
the manufacturer, be repaired or replaced. This warranty does not apply
to products damaged by improper use.

Warning

Keithley Data Acquisition assumes no liability for damages
consequent to the use of this product. This product is not designed

with components of a level of reliability suitable for use in life
support or critical applications.

Disclaimer

Information furnished by Keithley Data Acquisition is believed to be
accurate and reliable. However, Keithley Data Acquisition assumes no
responsibility for the use of such information nor for any infringements
of patents or other rights of third parties that may result from its use. No
license is granted by implication or otherwise under any patent rights of
Keithley Data Acquisition.

Copyright

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form by any means,
electronic, mechanical, photo-reproductive, recording, or otherwise
without the express prior written permission of the Keithley Data
Acquisition.

Note:

Keithley MetraBytem is a trademark of Keithley Instruments.

Basic* is a trademark of Dartmouth College.

IBM@ is a registered trademark of International Business Machines
Corporation.

PC, XT, AT, PW2, and Micro Channel Architecture@ are trademarks of
International Business Machines Corporation.

Microsoft@ is a registered trademark of Microsoft Corporation.

Turbo C@ is a registered trademark of Borland International.

- iv -

Contents

CHAPTER 1 . INTRODUCTION

1.1 Functional Overview . 1.1
1.2 Software Overview . 1.2
1.3 Accessories . . 1-3
1.4 Specifications . 1.4

CHAPTER 2 . INSPECTION. CONFIGURATION. & INSTALLATION

2.1 Inspection . 2.1
2.2 Configuration . 2.1
2.3 The Main I/O Connector J1 . 2.3
2.4 Software Installation . 2.3
2.5 The Configuration Program . 2.4
2.6 Hardware Installation . 2.5

CHAPTER 3 . OPERATING & PROGRAMMING OVERVIEW

3.1 General . 3.1
3.2 The Pop-up Control Panel . 3.1

. 3.3 The Call Driver . 3.1
3.4 Low-Level-Register I/O Programming . 3.1

CHAPTER 4 . THE POP-UP CONTROL PANEL

4.1 Overview . 4.1
4.2 Driver Descriptions . 4.1
4.3 Driver-File Loading/Unloading Options . 4-1
4.4 Syntax Conventions . 4.3
4.5 VLEXE: Loading & Unloading . 4.4
4.6 PADCl6.EXE: Loading & Unloading . 4.6
4.6 Loading ANSLSYS . 4.8

CHAPTER 5 . POP-UP CONTROL PANEL OPERATION

5.1 Preliminary Requirements . 5.1
5.2 Getting Started . 5.1
5.3 Important Hot Key Combinations . 5.1
5.4 The Control Panel . 5.2
5.5 The Data Logging Panel . 5.3

CHAPTER 6 . THE CALL INTERFACE

6.1 General . 6.1

6.3 QuickBASIC 4.0+, Including Professional BASIC 7.0+ 6-7

6.5 List Of Calls . 6-20
6.6 Glossary Of Call Terms . 6-22

6.2 GW BASIC, BASICA. & BASIC . 6.1

6.4 QBASlC . 6-13

CHAPTER 7 . INDIVIDUAL CALL DESCRIPTIONS

. v -

Contents

CHAPTER 8 . REGISTER-LEVEL I/O MAPS

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Introductory Information . 8-1
I/O Register Address Map . 8-1
AID Registers (Base Address +O & +1) . 8-1
MUX & Gain Register (Base Address +2) . 8-2
Control Register (Base Address +3) . 8-3
Status Register (Base Address +3) . 8-4
Typical Programming Sequence . 8-4
BASIC Example Program . 8-5

CHAPTER 9 . CALIBRATION

9.1 Calibration Interval . 9-1
9.2 Calibration Program . 9-1
9.3 Required Test Equipment . 9-1

CHAPTER 10 . FACTORY RETURNS

APPENDIX

Appendix A . Summary Of Error Codes

...

. v i -

CHAPTER 1

INTRODUCTION

1.1 FUNCTIONAL OVERVIEW

General
The AX-16 is a low-cost, high-resolution (16 bit), analog input board for ISA and EISA bus
computers (IBM PC/XT/AT or compatible). An integrating A/D converter performs up to 16
conversions/sec while ensuring repeatability in noisy environments. Eight differential input channels
offer 16-bit resolution (15 bit + sign). Figure 1-1 is a block diagram of the ADC-16.

1 m A
SOURCE O-- -

Vref r,
(+5 V)

MUX

CHO HI
CHO LO
C H I HI

CH1 LO
CH2 HI

C H 2 LO
CH3 HI

C H 3 LO
CH4 HI

CH4 LO
CH5 HI

CH5 LO
CH6 HI

CH6 LO
CH7 HI

CH7 LO

L.L. GND
L.L. GND
L.L. GND

GAINS 1, 10 . 100 I
SCALING fi - i 3 . 2 7 6 7

I .,
1 7 0

CONTROL/SiATUS
MUX & GAIN & INTERRUPT

SELECT REGISTER CONTROL REGISTER
I I

INTERNAL DATA aus

COMMON
N.3.
N.C.

COMMOlv
N.O.
N.C

OPD
C=:
E X 1
E X 2
EX4

IPO
IP 1

+5 V OUT
POWER COU
POWER COM

I U I
IBM PC BUS

Figure 1-1. Block diagram of the ADC-16.

Gains of 1,10, and 100 are software-programmable. A single gain adjustment sets the full scale of
every range. No additional adjustments are required since the zero of every range is automatically
corrected.

Additional features include two TTL compatible, general-purpose digital outputs and two general-
purpose TTL/CMOScompatible digital inputs. The digital outputs also drive two internal Form C
relays on the ADC-16. These relays are available for switching and expansion applications.

1 - 1

ADC-16 USER GUIDE

Three more digital outputs become available when the optional STA-EX8 expansion multiplexer(s) is
not used. A 1 mA, high-precision current source with a compliance of -10 V to +4 V allows excitation
of resistance-based transducers such as RTDs. All connections to the ADC-16 pass through a standard
37-pin D connector using the manufacturer's C-1800 cable.

Optional equipment for the ADC-16 includes two screw-termination boxes: the STA-U and the STA-
EX8. The STA-U provides access to all ADC-16 interface signals via miniature screw-terminal
connectors. The STA-EX8 provides access to all ADC-16 interface signals via miniature screw-
terminal connectors, and it provides eight additional input channels. Up to eight STA-EX8s may be
added to an ADC-16, resulting in 64 fully differential channels.

Operating Modes

A/D Transfers
The ADC-16 conducts A/D conversions on a self-timing basis; the conversions progress as quickly as
the A/D circuitry can operate. When a previous conversion ends, the Driver starts another. This
process continues until the scan is complete.

When a STart/Stop array is in use, the number of conversions is equal to the number of channels
specified in the array. This number can be up to 64 if eight STA-EX8s are in the system.

When a Channel/Gain array is in use, the number of conversions is equal to the number of entries in
the array. This number can be up to 256.

There are three modes of A/D operations:

SYNCHRONOUS MODE - where the transfers are occur in the foreground, forcing the user to
wait for the board to finish. This mode is invoked by the K-Syncstart call (see Chapters 6 and 7).

INTERRUPT MODE - where the transfers occur in the background, allowing the user to execute
code until the board finishes. This mode is invoked by the K-IntStart call and tested for
completion by the K-IntStatus call (see Chapters 6 and 7).

These two modes require that channel and gain information be set into Frames using the K-SetBuf
and K-SetChanGary or K-SetStartStopG calls. For more information on Frames, refer to Section 6.6.

IMMEDIATE MODE - where when a single A/D operation takes place, all information is passed
via the Call parameters rather than by Frames, as in the two previous modes.

Digital Operations
Digital Input and Output operate only in the Immediate Mode, as described above for Immediate
Mode

1.2 SOFTWARE OVERVIEW
This manual refers to the ADC-16 software as the Distribution Software. The Distribution Software
contains a softwareinstallation program, driver files, utility files, calibration files, and programming
example files. For a list of these files, with descriptions, refer to the ASCII file FILES.DOC.

1 - 2

CHAPTER 1 : INTRODUCTION

Because the Distribution Software arrives in compressed form, it is important that you follow the
installation instructions in Section 2.4. You must use the installation program to uncompress these
files before you can access FILES.DOC.

The driver software supports the Pop-up Control Panel and the Cull Driver, which are two of the three
interface options available for controlling the ADC-16. The third control interface is Register-Level I/O
programming. Chapter 3 describes of each of these interfaces.

Additional programming options are available in the Advanced Software Option (ASO) , which includes
the File I/O Command Driver, the Call Driver for C and Pascal, and the Dynamic Link Library for
Windows 3.X languages. Contact the manufacturer for information on this option.

NOTE: The README.DOC file (in the Distribution Software), contains last-minute information
not included in this manual. READMEDOC is a readable ASCII file.

1.3 ACCESSORIES
STA-EX8

STA-U

C-1800

8-channel expansion multiplexer.

Standard Screw Terminal Board.

Cable to connect ADC-16 to STA-EX8 or STA-U.

ASO-ADC-16 Advanced Software Option for the ADC-16. This option includes Call
Driver for C and Pascal, the Dynamic Link Library for Windows 3.X, and
the File I/O Driver. A user manual is also included.

1.4 SPECIFICATIONS

ADC-16 Board

A/D

Channels: 8 differential, expandable to 64 with STA-EX8 Boards.

Input Resolution: 16 bits (15 plus a sign bit).

Coding: Sign plus Magnitude (binary).

Input Ranges: k5 V or k3.2768 V Full Scale (jumper selectable).

Input Gains: 1, 10, or 100 (software- or jumper-selectable).

Sample Rate: 16 samples/second.

Input Settling Time: 50 p.

Input Offset: Auto-zeroed; k10 pV for Gain = 100, f l LSB for Gain = 1 or 10.

1 - 3

ADC-16 USER GUIDE

Absolute Accuracy

Gain = 1: M.O1% of range typical
Gain = 10: f0.05% of range typical

Gain = 100: M.05% of range typical

Relative Accuracy

Gain = l , l O , and 100
maximum.

+_0.03% maximum.
kO.lO% maximum.
k0.15% maximum.

Noise (Typical)

Gain = 1: < k1 bit rms.
Gain = 10: c +_1 bit rms.

Gain = 100: < +3 bits rms.

Input Impedance: Greater than 100 MegOhms.

Input Bias Current: 50 nA max.

Common Mode Rejection: Gain = 1 - 100 dB typ, 80 dB min.
Gain = 10 - 110 dB typ, 86 dB min.
Gain = 100 - 120 dB typ, 92 dE3 min.

Common Mode Range: +_6 V.

Max Input Volts w/o Power On: k35 VDC.
Damage:

Power Off k20 VDC.

DIGITAL I/O

Digital Inputs

Number of Inputs: 2, TTL/CMOS compatible.
Logic Type: High input returns a 1.

Logic Levels: Vil = .8 V, Vih = 2.0 V.
Iil = -.2 mA, Iih = 20 uA.

Digital Outputs

Number of Outputs: 5 TTL compatible.
Logic Type: Vol = .5 V rnax at 8.5 mA.

Voh = 2.7 V min at -0.4 mA.

Relay Outputs

Number of Channels: 2 Form C.
Max Current: 2.0 A at 28 Vrms (resistive).

POWER REQUIREMENTS

+_0.005% of range typical kO.012%

+5 V: 800 mA typ, 1 A max.
+12 V: 25 mA max.
-12 V: 15 mA max.

1 - 4

CHAPTER 1 : INTRODUCTION

ENViRONMENTAL

Operating Temperature: 0 to 70 OC.
Storage Temperature: -25 to 85 OC.

Humidity: 0 to 95% noncondensing.

PH YSiCAL

Dimensions: 9.0 x 4.2 in. (22.9 x 10.7 cm)
Weight: 10 oz (284 g).

STA-EX8 Board
Number of Inputs: 8 differential. Each STA-EX8 board uses one ADC-16 channel; up to 8 STA-EX

boards will work with a single ADC-16.

Input Offset: Auto-zeroed; k10 pV for Gain = 100, f 1 LSB for Gain = 1 or 10.

ACCURACY

Gain = 1: k.01% of Full Scale.
Gain = 10: +. 1 % typ.

Gain = 100: 2.1% typ.

N 01s E (TYPICAL)

Gain = 1: <fl bit rms.
Gain = 10: <i2 bits rms.

Gain = 100: <+15 bits rms.

Input Impedance: Greater than 100 Megohms.

Input Bias Current: 50 nA max.

Common Mode Rejection: Gain = 1 - 100 dB typ, 80 dB min.
Gain = 10 - 110 dB typ, 86 dT3 min.
Gain = 100 - 120 dB typ, 92 dB min.

Common Mode Range: i 6 V

Max Input Volts w/o Power On: i35 VDC.
Damage:

Power Off i20 VDC.

1 - 5

ADC-16 USER GUIDE

POWER REQUIREMENTS

+5 V: 10 mA typ, 100 mA max.

+12 V: Not used.

-12V: Notused.

ENVIRONMENTAL

Operating Temperature: 0 to 70 "C.

Storage Temperature: -25 to 85 "C.

Humidity: 0 to 95% noncondensing.

PH YSlCAL

Dimensions: 6.7 x 5.4 x 2.3 in. (17.0 x 13.7 x 5.8 cm)

Weight: 11 oz (312 g).

STA-U Board
This board is simply a wiring feed-through for facilitating connections to the ADC-16. As such, the
STA-U has no meaningful specifications beyond the following.

ENVIRONMENTAL

Dimensions: 6.7 x 5.1 x 2.4 in. (17.0 x 13.0 x 6.0 cm)

Operating Temperature: 0 to 70 "C.

Storage Temperature: -25 to 85 "C.

Humidity: 0 to 95% noncondensing.

1 - 6

CHAPTER 2

INSPECTION, CONFIGURATION, &
INSTALLATION

2.1 INSPECTION
After removing the wrapped Board (ADC-16) from its outer shipping carton, proceed as follows:

1. Before unwrapping the Board, place one hand firmly on a metal portion of the computer chassis to
discharge static electricity from yourself and the Board (the computer must be turned Off but
grounded).

2. Carefully remove the Board from its anti-static wrapping material.

3. Inspect the Board for signs of damage. If any damage is apparent, return the Board to the factory.

4. Check the remaining contents of your package against the packing list to be sure your order is

5. When you are satisfied with preliminary inspection, you are ready to configure the Board. Refer

complete. Report any missing items to the factory immediately.

to the next section for configuration options.

2.2 CONFIGURATION

Switch & Jumper Settings

Figure 2-1. Location of Base Address switch and Input Range jumper.

2 - 1

ADC-16 USER GUIDE

The Base Address Switch

The factory-set Base Address is 300h (768 decimal).
If this address is already in use, change the setting
of the Base Address Switch (refer to Figure 2-2 for
the address-setting arrangement of the Switch).
Any new Base Address setting must be within the
range of OOOh to 3FFh (0 to 1023 Decimal) on an 8-
byte boundary. Use the Table 2-1 as an aid to
selecting a Base Address.

ADDRESS ADDRESS LINE VALUES
LINE DECIMAL * E X

512 2 ' X
256 >CC

64 10

16 I S
8 8

128 en

i i i i i i i

Switch settings indicote a value of

512 + 256 = 768 Decimol

200 + 1W = 300 Her
or

1 2 3 4 5 6 7

Figure 2-2. Base Address Switch

Table 2-1. PC/XT/AT I/O Address Space

HEX RANGE USAGE HEX RANGE USAGE

000-00F
020-02 1
040-043
060-063
060-064
070-07 1
080-O8F
OAO-OA 1
OAO-OAF
OCO-ODF
OFO-OFF
IFO-IFF
200-20F
210-21F
238-23B
23C-23F
278-2717
2BO-2BF

8237 DMA #I
8259 PIC #I
8253 Timer
8255 PPI (XT)
8742 Controller (AT)
CMOS RAM & NMI Mask Reg. (AT)
DMA Page Registers
8259 PIC #2 (AT)
NMI Mask Register (XTj
8237 DMA #2 (AT)
Coprocessor
Hard Disk (AT)
GameKontrol
Expansion Unit (XT)
Bus Mouse
AIL Bus Mouse
Parallel Printer
EGA

2CO-2CF
2DO-2DF
2EO-2E7
2E8 - 2EF
2F8-2FF
3 00- 3 OF
3 10-3 1F
320-32F
378-3717
380-38F
3AO-3AF
3BO-3BB
3BC-3BF
3CO-3CF
3DO-3DF
3E8-3EF
3FO-3F7
3F8-3FF

EGA
EGA
GPIB (AT)
Serial Port
Serial Port
Prototype Card
Prototype Card
Hard Disk (AT)
Parallel Printer
SDLC
SDLC
MDA
Parallel Printer
EGA
CGA
Serial Port
Floppy Disk
Serial Port

The Jumper
The only b a r d jumper is a 2-position arrangement for setting the A/D Full Scale Range. This jumper
is set and calibrated by the factory for a Full Scale Range of i3.2768 V, as shown in Figure 2-3. To
change to the k5 V Range, set the jumper accordingly and recalibrate the Board. See Chapter 9 for
calibration instructions.

RANGE

3.276v J2 m 5v Figure 2-3. J2 jumper shown with factory setting.

The k3.2768 V scaling has the advantage of round-number bit resolution (100,10, or 1 uV/bit), which
facilitates scaling from the binary output of the converter. The k5 V scaling has the advantage of
matching most commercial signal sources and transducers (1OV with 2 /1 attenuator). Table 2-2 lists
the Full Scale/Gain ranges and their corresponding bit resolutions.

2 - 2

CHAPTER 2: INSPECTION, CONFIGURATION, & INSTALLATION

Table 2-2. Input Range vs. Bit Resolutions

3.276 V INPUT RANGE 5 V INPUT RANGE

GAIN RANGE RESOLUTION RANGE RESOLUTION

1 f3.2768 V 100 uv i5 v 152.6 uV
10 f327.68 mV 10 uv i500 mV 15.26 uV
100 k32.768 mV 1 uv k50 mV 1.526 uV

2.3 THE MAIN I/O CONNECTOR J1

Analog and Digital I/O use a 37-pin, D-type connector accessible L L GND

from the rear of the computer. Figure 2-4 shows the connector and CH 0 LO IN

its pinouts. CH ' LO IN
CH 2 LO I N

CH 3 LO IX

CH 4 LO lh

CH 5 LO IN

CY 6 LO IN

CH 7 LC IN

VREF (+ j V)

1 m A SOURCE

E X 4
PWR CCM

OPO

C P 1

REL 1 N.C.

QEL 1 N.C

REL 0 C

+ 5 V PWR

Figure 2-4. Main I/O Connector

l 8 36
I ' 35

34 5 33
32
31

29
25
27
26
25
24
23
22
21
20

l 2 33
I 1
l o

4

>

C h 3 H' I \

CH 1 k IU

C'i 2 r IN

C Y 3 H, I \

c 4: i\l

CH 5 i t ; !A
CH 6 HI IU

CH 7 HI IN

L L GND

L L GNC
PWR COM

E X 2
EX 1

1 PO
lP1

REL 1 C

REL 0 X . 0 .

REL 0 K.C.

2.4 SOFTWARE INSTALLATION

Backing Up The Distribution Software
As soon as possible, make a back-up copy of your Distribution Software. For the back-up copy, be
sure to have one (or more,as needed) formatted diskettes on hand. First, place your Distribution
Software diskette in your PC's A Drive and log to that drive by typing A : . Then, use the DOS COPY
or DISKCOPY command, as described in your DOS reference manual (DISKCOPY is preferred
because it copies diskette identification, too).

Installing The Distribution Software
Your Distribution Software is usable only after it is installed on the hard drive of your PC. For
installation, insert the Distribution Software diskette (Diskette #1) in the A Drive, and type INSTALL
<Enter>. Then follow the prompts. The software requires approximately 620 KB of hard-drive
space.

2 - 3

ADC-16 USER GUIDE

The README.DOC File
To learn of last-minute changes, be sure to read the ASCII file R E A D M E D O C . This is an ASCII text
file that is readable with any text editor (word processor) or with the DOS TYPE command.

The FILES.DOC File
To learn the contents of your Distribution Software, refer to the ASCII file FILESDOC . This file lists
and describes each of the files in the Distribution Software. This is an ASCII text file that is readable
with any text editor (word processor) or with the DOS TYPE command. FILES.DOC lists and briefly
describes the contents of the Distribution Software.

2.5 THE CONFIGURATION PROGRAM

Overview
NOTE: Before you can run the Configuration Program, you must install the Distribution

Software (Section 2.4).

Your ADC-16 Distribution Software includes the Configuration Program ADC16CFG.EXE , whose
purpose is to assist you in setting up Board parameters and saving them to a new or existing
configuration file. The default configuration file in your Distribution Software is ADCI6.CFG ;
however, the Configuration Program allows you to save a set of parameters to any configuration file
you specify.

A configuration file is a necessary reference for Call Driver programs (Chapters 6 and 7) and for the
Pop Up Control Panel. The file contains information such as the number of ADC-16s in use, Base
Address, Range, Interrupt Level, and the number of STA-EX8s linked to each Board. If you bypass the
configuration program, the Call Driver refers to the ADC16.CFG default file.

Factory Defaults
Factory settings for the ADC16.CFG file are as follows:

BoardNumber 0
Board Name ADC16

Base Address &H300
Range 3.2768

Number Type SignMagnitude
Interrupt Level 7

Installed STA-EX8s 0

Running the Configuration Program
To start the configuration program, log to its directory, and type ADCl6CFG
follow the on-screen instructions.

f i 1 ename . Then

2 - 4

CHAPTER 2: INSPECTION, CONFIGURATION, & INSTALLATION

filename is the name of the configuration file to be modified; i t may be an existing filename, or it may
be a new filename that complies with DOS file-naming conventions. The default file is ADC16.CFG.

2.6 HARDWARE INSTALLATION

Installation Of The Board
To install the ADC-16 in a PC, proceed as follows:

1. Turn Off power to the PC and all attached equipment.

WARNING!
ANY ATTEMPT TO INSERT OR REMOVE ANY ADAPTER BOARD
WITH COMPUTER POWER ON COULD DAMAGE YOUR
COMPUTER!

2. Remove the cover of the PC.

3. Choose an available option slot. Loosen and remove the retainer screw at the top of the blank

4. Before touching the Board, place one hand on any metallic part of the PC/AT chassis (but not on

5. Make sure the Board switches have been properly set (refer to the configuration sections).

6. Align the Board connector with the desired accessory slot and with the corresponding rear-panel
slot. Gently press the Board into the socket. Secure the Board in place with retainer screw for the
rear-panel adapter-plate.

7. Replace the computer's cover.

8. Plug in all cords and cables. Turn the power to the computer back on. You are now ready to

adapter plate. Then slide the plate up and out to remove.

any components) to discharge any static electricity from your body.

make any necessary system connections.

Installation Of The Expander Boxes
All connections to the ADC-16 are made through the Main I/O connector. Two interface options are
the STA-U and STA-EX8 accessory boxes. If your application requires access to ADC-16 interface
signals via screw terminals and eight or fewer channels of analog input use the STA-U. If your
application requires additional channels (more than eight), use the STA-EX8. This section describes
the installation of each. Note that the ADC-16 must already be installed for these procedures.

STA-U Installation
The STA-U allows access to ADC-16 interface signals via screw terminals. To connect the STA-U to
the ADC-16, obtain a C-1800 cable. Then, proceed as follows:

1. Turn your computer off.

2. If the STA-U is enclosed, loosen the four comer screws and remove the top cover.

3. Plug one end of the C-1800 cable into the Main 1/0 Connector of the ADC-16.

2 - 5

ADC-16 USER GUIDE

4. Plug the other end of the C-1800 cable into one of the two 37-pin connectors on the STA-U.

5. Make any other connections the STA-U, as required by your application.

6. Replace the cover on the STA-U and tighten the screws, if desired.

STA- EX8 Installation

OVERVIEW

The STA-EX8 is a multiplexed expander box with screw connections to the ADC-16 interface signals
and the eight input channels. Up to eight STA-EX8 Boards connect to a single ADC-16 to offer up to
64 fully differential channels. The STA-EX8 has two 12-screw terminal blocks (TBI and TB2) and two
24-screw terminal blocks (TB5 and TB6) allowing access to the ADC-16 interface signals.

TB1 and TB2 provide access for digital input and power signals. TB2 provides two TTL-compatible
digital outputs, two TTL/CMOScompatible digital inputs, and access for power signals. TBl allows
direct connection to the two internal Form C relays on the ADC-16. Note that the signals through TBl
and TE32 run in parallel across the C-1800 cable; this is significant when accessing the power signals.
Figure 2-5 shows the signal assignments for TBl and TB2.

TB2 TB 1 ,

Figure 2-5. TB1 and TB2 signals.

TB5 and TI36 accommodate connections to the input channels. In addition, these two terminal blocks
provide extra input channels (see section on input-channel assignments, ahead). Figure 2-6 shows the
signal assignments for TB5 and TB6.

I I

Figure 2-6. TB5 and TB6 signal assignments.

Two 37-pin connectors share pin assignments with the ADC-16 Main 1 / 0 Connector. These two
connectors may be used to daisy-chain multiple STA-EX8s. Refer to Figure 2-4 for pinouts of these
connectors.

CHO C H I CH2 CH3 CH4 CH5 CH6 CH7 mlrl
TB4 TB 3

Figure 2-7. Channel Select Jumper

2 - 6

CHAPTER 2: INSPECTION, CONFIGURATION, & INSTALLATION

Finally, the Channel Select Jumper (TB3 and TB4) determines which ADC-16 input channel the STA-
EX8 will use for communication. You may have up to eight STA-EX8s connected to one ADC-16.
Each STA-EX8 must have its own ADC-16 input channel. For example, if your application requires
two STA-EX~S, one might be assigned to Channel 0, the other to Channel 1. Figure 2-7 shows the
Channel Select Jumper configured for Channel 1.

INSTALLATION PROCEDURE

Obtain the required C-1800 cables, and connect STA-EX8b) to an ADC-16 as follows:

1. Be sure your computer is off.

2. Remove the top cover of the STA-EX8 (loosen the four corner screws and remove; then, lift the
cover).

3. Set the Channel Select Jumper for an available ADC-16 input channel.

4. Plug one end of the C-1800 cable into the ADC-16's I/O Connector.

5 . Plug the other end of the C-1800 cable into the first 37-pin connector (J1) on STA-EX8 #1.

6. If you are connecting more than one STA-EX8, daisy-chain the first STA-EX8 to the second. Plug
one end of a second C-1800 cable into the second 37-pin connector (J2) of STA-EX8 #1. Then,
connect the C-1800 to J1 on STA-EX8 #2. Repeat this step for successive STA-EX8s. (Remember,
you cannot install more than eight STA-EX8s.I

7. Make all other STA-EX8 connections, as required by your application.

8. Replace the cover(s) on the STA-EX8(s).

INPUT CHANNEL ASSIGNMENTS

When programming the ADC-16 to accept the data presented on the channels added by the STA-EX8
multiplexer, you must understand the assignment of the input channels. First, the Channel Select
'jumper on each STA-EX8 determines which ADC-16 input channel (CHO, CHI, CH2, CH3, etc.) the
STA-EX8 will use for communication. The multiplexed channels (EXO, EX1, etc.) are then allocated
consecutively from the assigned ADC-16 channel. For example, if your application has two STA-EX~S,
you will assign the first STA-EX8 to ADC-16 Channel CHO. The multiplexed channels will then be
allocated as follows: EX0 = Channel 0, EX1 = Channel 1, EX2 = Channel 2, ... EX7 = Channel 7. Then,
you will assign the second STA-EX8 to ADC-16 Channel CH1. The multiplexed channels of the
second STA-EX8 will then be EX0 = Channel 8, EX1 = Channel 9, ... EX7 = Channel 15. The remaining
ADC-16 input channels will then follow EX7 = Channel 15; that is, CH2 = Channel 16, CH3 = Channel
17, ... CH7 = Channel 21. Be aware that the ADC-16 input channels run in parallel across the cable.
For example, the CH2 output is associated with channel 16 on both STA-EX8s. Figure 2-8 illustrates
this arrangement.

Note that the STA-EX8 multiplexed inputs are not usable by the Pop Up Control Panel.

2 - 7

ADC-16 USER GUIDE

C-1800

AOC-16 MAIN
I /

-1 I CONNECTOR

L NOT AVAILABLE FOR CONNECTIONS AS THESE CHANNELS
ARE BEING USED BY THE STA-EX8 MULTIPLEXERS.

0 0

I
U

z

CHO = STA-EX8 #I *
CH1 = STA-EX8 82'
CH2 = CHANNEL 15
CH3 = CHANNEL 17
CH4 = CHANNEL 18
CH5 = CHANNEL 19
CH6 = CHANNEL 2 0
CH7 = CHANNEL 21
EX0 = CHANNEL 3
EX1 = CHANNEL 1
EX2 = CHANNEL 2
EX3 = CHANNEL 3
EX4 = CHANNEL 4
EX5 = CHANNEL 5
EX5 = CHANNEL 6
EX7 = CHANNEL 7

STA-EX8

CHO = STA-EX8 #l *
CH1 = STA-EX8 #2'
CH2 = CHANNEL : 5
C q 3 = CHANhEL 17
CH4 = CHANNEL 18
CH5 = CHANNEL : 9
CH5 = CciANNEL 20
CH7 = CHANNEL 2 :
EX0 = CHANNEL 8
EX1 = CHANNEL 9
EX2 = CHANNEL 1 0
E X 3 = CHANNEL 1 1
EX4 = CHANNEL 1 2
EX5 = CHANNEL 1 3
EX5 = CHANNEL i L

EX7 = CHANNEL 1 5

STA-EX8

Figure 2-8. Example of Input Channel Assignments.

2 - 8

CHAPTER 3

OPERATION & PROGRAMMING OVERVIEW

3.1 GENERAL
The ADC-16 Distribution Software Package provides the following options:

The Pop Up Control Panel

The Call Driver for BASIC

Low-level-Register 1 / 0 Programming

Additional programming options, PASCAL and C support, and Windows 3.x languages support are
available in the Advanced Software Option.

3.2 THE POP UP CONTROL PANEL
The Pop Up Control Panel allows you direct control of ADC-16 operation without programming. You
may configure the board to perform an analog or digital operation and to store the resultant data in a
disk file. The Pop-up uses two control panels that you may pop up with a keyboard sequence and
control using either the keyboard or mouse while under DOS or inside an applications package. This
Interface provides a quick way to test your board as well as to debug/monitor operation. By selecting
the data logging menu, you may turn the ADC-16 into an automatic data logging system.

Chapter 4 contains instructions for loading the Pop Up Control Panel drivers. Chapter 5 covers
operation.

3.3 THE CALL DRIVER
The Call Driver is a collection of functions (Calls) for use in programs written in Interpreted BASIC,
QuickBASIC, or QBASIC. The Calls allow you to write control programs without using register-level
programming, and they perform the most commonly used set-up and operating functions. The
Advanced Software Option provides Call Drivers for PASCAL and C and Windows 3.x languages.

Chapter 6 lists and briefly describes each of the Call drivers and each of the Calls. Chapter 7 covers
the use of each Call and provides examples for Interpreted BASIC, QuickBASIC, and QBASIC.

3.4 LOW-LEVEL-REGISTER I/O PROGRAMMING
You may also program the ADC-16 by writing directly to the on-board registers. Chapter 8 supplies
ADC-16 register maps and corresponding bit functions.

3-1

CHAPTER 4

THE POP UP CONTROL PANEL

4.1 OVERVIEW
The Pop Up Control Panel is a software tool for setting up and monitoring the operation of your ADC-
16 board. In its monitoring capacity, the Pop-up is also useful for verifying settings and for isolating
incorrect settings or problems.

Supporting software for the Pop-up consists of the two drivers VLEXE and PADC16.EXE; both
drivers are in the Distribution Software. For descriptions, refer to Section 4.2.

To use the Pop Up Control Panel, you must first load VI.EXE and PADC16.EXE into DOS memory.
Loading may be via the DOS command line or via batch file. For complete loading instructions, refer
to Sections 4.4 and 4.5.

4.2 DRIVER DESCRIPTIONS

VI.EXE

PADCl6.EXE

Virtual Instrument driver program that supports the graphics, functions,
and background operations of the Pop Up Control Panel for the ADC-16
and other products from the manufacturer. This driver occupies
approximately 55K of DOS memory, and i t must be loaded before
PADC16.EXE.

The driver program that supplies the graphics, functions, and
background operations for the ADC-16 Pop Up Control Panel. This
program loads from the DOS command line, and it must be loaded after
VLEXE.

After loading these drivers, you may display or hide the Pop Up Control Panel panels using hot keys ,
either the default hot keys or those you assign during the PADCl6.EXE loading. Pop Up Control
Panel panels occupy the top eight character lines of the computer display; you operate their controls
by either mouse or keyboard. For complete Pop Up Control Panel opcrating instructions, refer to
Chapter 5.

4.3 DRIVER-FILE LOADING/UNLOADING OPTIONS

General
Your options for loading and unloading driver files are as follows:

Via the AUTOEXEC.BAT file (for loading only).

Via the command line.

4 - 1

ADC-16 USER GUIDE

Via a batch file.

Via the SHOW.BAT utility.

With each of these options, the load/unload order must be as follows:

ProDer loadinp - order:

First, load VI.EXE
Then, load PADC16.EXE

Prowr unloading. order:

First, unload PADC16.EXE
Then, unload VI.EXE

Loading Via AUTOEXEC.BAT
When you load via the AUTOEXEC.BAT file, your driver files load automatically with each computer
boot-up. The files remain active until you unload them or shut down the computer.

Modify the AUTOEXEC.BAT file to include driver-loading instructions in either of two ways, as
follows:

1. Use a text editor. Edit AUTOEXEC.BAT to include

VI
PADC16

Note that using these instructions without switch options gives you default settings (see
Chapter 2 for default settings). To change the default settings, use the switch options
described in Section 4.5.

2. Use the ATXSETUP.EXE setup utility (from the Distribution Software) to automatically
install the basic driver-loading instructions in AUTOEXEC.BAT. To use this utility, log to the
directory containing the Distribution Software and type ADCSETUY c Enter > .

Loading/Unloading From The Command Line
This method allows you to load and unload the driver files on an as-needed basis. You may also
change your switch parameters with each loading. Unfortunately, this method can be tedious,
especially when your entry contains an error. Drivers loaded from the DOS command line may be
unloaded from the command line, or they may be unloaded by rebooting the PC.

Loading/Unloading Via Batch Files
Batch files also allows you to load and unload your driver files on an as-needed basis. However, you
are confined to a single set of switch parameters unless you modify your start-up file or you have
additional batch files. You must also use separate batch files for loading and unloading. Use a text
editor to create your batch files, and be sure you insert your instructions in the correct order (refer to
LoadinglUnIoading Order 1.

4 - 2

CHAPTER 4: THE POP UP CONTROL PANEL

Loading Via SHOW.BAT
The Distribution Software contains the file SHOW.BAT for the purpose of fast and easy batch-file
loading. SHOW.BAT loads VI.EXE and PADC16.EXE in the required order, leaving you with the Pop
Up Control Panel on the screen.

Note that loading P A X 1 6 without switch options gives you the board's default settings. See Chapter
2 for a list of default settings.

4.4 SYNTAX CONVENTIONS
Unless otherwise noted, the syntax for the driver load/unload sections Sections 4.5 and 4.6) use the
following character-formatting rules:

Bold = Indicates a mandatory entry, as follows:
BOLD UPPER-CASE : enter exactly what is shown.
bold lower-case : substitute a name, string, or value.

I t a l i c = Indicates oDtional entw , as follows:
ITALIC UPPER-CASE : enter exactly what is shown.

ifalic lower-case : substitute a name, string, or value.

Plain = Indicates characters not reauired for execution of the command.
Plain characters ap ear in the syntax only for clarity; whether used
or not, they have no e P fect.

4 - 3

ADC-16 USER GUIDE

4.5 VI.EXE: LOADING & UNLOADING
Syntax for loading/unloading VI.EXE is as follows:

NOTE: Refer to Section 4.4 for syntax conventions.

path Vf.exe MONO /HK = x /MK = m /SK = s /U

where

path DOS path to VI.EXE. Example: C:\ADC16\

MONO Optional command for computers with monochromatic displays. If MONO is
not specified, COLOR is assumed.

/HK = x Help Key switch: to specify your choice of key(s) for bringing up the Help
Screen for the Pop Up Control Panel. The default Help Keys are < Alt > +
< H >.

x is one, two, or three keys, as follows:

(1) One key: any choice of c A > through < Z > , < F1> through < F10 > ,
< O > through c 9 > , o r < T a b > , <Esc>,or < ? > ;

(2) Two or three keys: it can be a combination of the < Ctrl> and/or
< Alt > key(s) plus any choice of < A > through < Z > , < F1> through
<F10> , < O > through < 9 > , o r <Tab>, <Esc> ,o r < ? > .

Note that your entry must be spelled out. For example, entering /HK = F1
assigns the function key < F1> to be the Help Key. Or entering /HK = Ctrl D
specifies that the c Ctrl> and < D > keys must be pressed at the same time to
bring up the Help screen.

IMK = m Mode Select Key switch: to specify whether the Pop-up Menu is to be
Keyboard or a Mouse operated. The default Mode Select keys are < Alt > +
< M > . Using the Mode Select key combination switches the Pop-up Menu
into Keyboard mode; from there, you press c Esc > to enter Mouse mode.

m is one, two, or three keys, as follows:

(1) One key: any choice of < A > through < Z > , < F1> through < F10 > ,
< 0 > through < 9 > , or < Tab > , < Esc > , or < ? > ;

(2) Two or three keys: it can be a combination of the < Ctrl> and/or
< Alt > key(s) plus any choice of < A > through < Z > , < F1> through
c F 1 0 > , < O > through < 9 > , o r < T a b > , <Esc> ,o r < ? > .

4 - 4

CHAPTER 4: THE POP UP CONTROL PANEL

Note that your entry must be spelled out. For example, entering /MK = F8
assigns the function key < F8 > for Mode Select. Or entering N K = Ctrl T
specifies that the < Ctrl > and < T > keys must be pressed at the same time.

ISK = s Instrument Select Key switch: if you have other ADC-16 boards installed in
your computer, this switch enables you to toggle between Pop-up Panels of
each instrument for the HELP function or for Mode selection of Keyboard
input. The default Instrument Select key is < Alt > + < Tab > .
s is one, two, or three keys, as follows:

(1) One key: any choice of < A > through < Z > , < F1> through < F10 > ,
< 0 > through < 9 > , or < Tab > , < Esc > , or < ? > ;

(2) Two or three keys: it can be a combination of the < Ckl> and/or
< Alt > key(s) plus any choice of < A > through < Z > , < F1> through
< F10 > , < 0 > through < 9 > , or < Tab > , < Esc > , or < ? > .

Note that your entry must be spelled out. For example, entering /SK = F3
assigns the function key < F3 > as the Mode Select key. Or entering /SK =
Ctrl S specifies that the < Ctrl> and < S > keys must be pressed at the
same time.

IU Unload switch: when VI.EXE is already loaded and you wish to unload it from
memory, you use only this switch in your instruction. For example, using the
example path given above your unload instruction will be

C:\ADC16\VI /U

NOTE that before you can unload VI.EXE, you must first unload PADC16.EXE.

An example instruction for VI.EXE is

C:\VI.EXE /HK = Alt X /MK = A l t Y /SK = A l t 2

You would enter this instruction at the DOS command line or into the AUTOEXEC.BAT file. This
instruction specifies the following:

VI.EXE is in the root directory of the C Drive

Color monitor

Helpkeysare <Al t> + < X >

Mode Select keys are < Alt > + < Y >

Instrument Select keys are < Alt > + < Z > .

When this instruction for loading VI.EXE is executed, the computer will respond with the following
display:

4 - 5

ADC-16 USER GUIDE

****** V 1 . m Rev 3.04
o HELP KEY is ALT X
o INSTRUMENT SELECT KEY is ALT 2
o MODE SELECT KEY is ALT Y

4.6 PADCI 6.EXE: LOADING & UNLOADING
Before you load PADC16.EXE, you must load VLEXE. Syntax for loading/unloading PADC16.EXE is
as follows:

NOTE: Refer to Section 4.4 for syntax conventions.

p a t h PADC16.exe /aA = b /F = cfgfile /PK = p /NAME = devname / H e l p / u

The elements of this model are explained as follows (note that if you do not use the switch options,
their default values remain in effect):

p a t h DOS path to PADC16.EXE. Example: C:\ADC16\

/BA = b Base Address: The Base Address setting for the board being loaded (refer to
base-address selection, in Chapter 2). The default Base Address is &H300
(768 decimal).

b is the Base Address value. Either hex (range = &H200-&H3FO) or decimal
values are acceptable; however, if they are given in hex they must be preceded
by an ampersand (&) and an H (for example, &H300). Make certain the Base
Address you enter has not been already assigned to another device.

/F = cfgfile Default Override: allows you to change any or all of the default
parameters discussed in the configuration section (Section 2.2) of Chapter 2.

cfgfile the name of a configuration file created with the ADC16CFG.EXE
utility discussed in Chapter 2. The example file used for discussion in Chapter
2 is ADCZ6.CFG.

/PK = p Pop Up Control Panel hot key switch: when the number of installed boards is
greater than one, each instrument should have its own Pop-up key assignment.
The default Pop Up Control Panel hot key is < Alt > c F5 > .

p is one, two, or three keys, as follows:

(1) One key: any choice of < A > through < Z > , < F1> through < F10 > ,
< 0 > through < 9 > , or c Tab > , < Esc > , or < ? > . Note that in working
with a single key, the key you choose will be unusable for any other
function while CALL.EXE is loaded; you might therefore want to confine
your single-key choice to one of the function keys (< F1> through < F10 >
).

4 - 6

CHAPTER 4: THE POP UP CONTROL PANEL

/NAME = n

/ H e l p

IU

(2) Two or three keys: it can be a combination of the < Ctrl> and/or
< Alt > key(s) plus any choice of < A > through < Z > , < F1> through
< F10 > , < 0 > through < 9 > , or < Tab > , < Esc > , or < ? > .

Note that your entry must be spelled out. For example, entering /PK = F3
assigns the function key < F3 > for Mode Select. Or entering /PK = Ctrl P
specifies that the < Ctrl> and < P > keys must be pressed at the same time.

Use when the number of installed boards is greater than one and you wish to
display the Pop Up Control Panel for any two of the boards simultaneously.
You must enter an PADC16,EXE instruction for both boards--to give each
board unique hot keys, Base Address, and name.

n is the name you enter for one board; it must be 1-8 characters. Any of the
following characters are acceptable: < A > through < Z > , < 0 > through
< 9 > , < $ > , < & > , < # > , < @ > , < ! > , < % > , < (> , < I > , < - > , < { > ,
c 1 > , c - > . Note that /, \, and * are illegal.

For example, NAME=ADC16

Use this switch to list all command-line options for the ADC16.EXE driver.
When you use this switch, you will need no other switches, because the driver
is not installed.

Unload switch: when you wish to unload PADCl6.EXE from memory, use
only this switch in your instruction. For example, using the path given above
your unload instruction will be

NOTE that you must unload PADC16.EXE before VI.EXE.

An example instruction for PADC16.EXE is as follows:

C: \ADC16\PADC16

You would enter this instruction at the DOS command line or into the AUTOEXEC.BAT file. This
instruction specifies the following:

PADC16.EXE is in the ADC16 directory of the C Drive

With no switches, the software uses the factory-preset parameters.

When this instruction for loading PADC16.EXE is executed, the compliter responds with the following
display.

4 - 7

ADC-16 USER GUIDE

****** PADC16.EXE popup D r i v e r R e v 1.00
o popup H o t K e y i s ALT F 6
o Factory C o n f i g u r a t i o n assumed

Number Of B y t e s Used B y D e v i c e : 57968
A t Memory Segment [l l B 3]

4.7 LOADING ANSLSYS
To obtain optimum computer performance while working with the VI.EXE and PADC16.EXE files,
your system may require access to the DOS ANSI.SYS file. ANSI.SYS is generally included with the
files in your computer's DOS software. To activate ANSI.SYS, you must modify your computer's
CONFIG.SYS file to include an ANSI.SYS loading instruction. Your instruction must use the syntax of
the following model:

DEVICE = path ANSI.SYS

For example, if ANSI.SYS is in a directory called D O S on the D Drive, your instruction would be

DEVICE=D:\DOS\ANSI.SYS

Remember that when you alter a CONFIGSYS file, you must re-boot before the new changes can take
effect.

4 - 8

CHAPTER 5

POP UP CONTROL PANEL OPERATION

5.1 PRELIMINARY REQUIREMENTS
Before you can use the Pop Up Control Panel, your ADC-16 board must be properly installed and
your VI.EXE and PADC16.EXE drivers properly loaded. For board-installation instructions, refer to
Chapter 2. For driver-loading instructions, refer to Chapter 4.

5.2 GETTING STARTED

To Get Up & Running Quickly
NOTE: This procedure is valid only when ADC-16 factory configuration is in effect for both

hardware and software and when you are logged to the directory containing the
Distribution Software.

1. With the board installed, type SHOW

2. Click your mouse on ADSTART, located at the top of the Panel. You are now acquiring samples
from channels at 16 Hz. The data from this first channel scan should be showing on the Panel.

3. Connect known voltages to Analog Input channels and repeat Step 2.

to put the Analog Panel Jt the top of your display.

To Get Up & Running Via Hot Keys
1. With the board installed and drivers loaded, use the hot keys to access the Pop Up Control

Panel. The default hot keys are c Alt > c F6 > ; press these keys simultaneously to put the
Analog Panel at the top of your display.

2. Click your mouse on ADSTART, located at the top right of the Panel. You are now acquiring
samples from channels at 16 Hz. The data from this first channel scan should be showing on the
Panel.

3. Connect known voltages to Analog Input channels and repeat Step 2.

5.3 IMPORTANT HOT KEY COMBINATIONS
Familiarity with the hot-key combinations can speed up operation. The following hot keys are the
default combinations; you may change any or all of them to keys of your choice. To change any of
these keys, refer to the switch options in the driver-loading instructions of Sections 4.4 and 4.5.

5 - 1

ADC-16 USER GUIDE

c Alt > c F6 >Pop Upmown Keys. Use these keys to show and hide the Pop Up Control Panel panels.

c Alt > c H > Help Keys. Use these keys to show the Help Panel whenever a Pop Up Control
Panel Panel is showing.

c Alt > c Tab >Next Pop Up Keys. Use these keys to move from Pop Up to Pop
Up when panels for multiple boards are showing.

Keyboard Mode Entry Keys. Use these keys to change to the Keyboard Entry
Mode. Use the c Esc > key to exit this mode.

c Alt > c M >

5.4 THE CONTROL PANEL
The Control Panel of the Pop Up Control Panel appears as follows:

Control Panel Menu

This menu appears along the top of the Panel and contains three options, as follows:

This option toggles between the keyboard and mouse control of the Pop Up Control
Panel.

This option starts an A/D conversion takes you to the Digital Panel. However,
before starting a conversion, make any necessary changes to the Setup controls.

This option stops an A/D conversion.

Keyboard

ADStart

ADStop

Setup Controls
These controls set up parameters for the A/D conversion. The Setup Menu appears as follows:

AD Type sets the A/D conversion mode. Choices are Synchronous and Interrupt.

5 - 2

CHAPTER 5: POP UP CONTROL PANEL OPERATION

Level is active only when the AD Type is Interrupt. Choices are 2, 3, 4,5,7,10,11, and 1 5 .

Units selects AD Codes or Volts.

Start selects the Start Channel for the A/D conversion. The Start Channel may range from 0-7;
however, it can be no greater than the number specified for the Stop Channel.

Stop selects the Stop Channel for the A/D conversion.

Gain Selects the gain for the A/D conversion. Choices are 1, 10, and 100.

Channel - A/D Data
The monitor panel for the A/D conversion(s) appears as follows:

Only the channels specified by Start and Stop (under Setup) will show results. These results update
with each conversion cycle.

5.5 THE DATA LOGGING PANEL
The Data Logging Panel appears as follows:

Data Logging Menu

This menu appears along the top of the Logging Panel and contains 3 options as
follows:

This option toggles between the keyboard and mouse control of the Control Panel.

This option starts the Logging function and StopLog is displayed. If StopLog is
selected then StartLog is displayed and logging is stopped.

Displays the Main Control Panel Screen.

Keyboard

StartLog

Main

...
5 - 3

CHAPTER 6

THE CALL DRIVER

6.1 GENERAL
The Call Driver is a comprehensive set of functions you may incorporate into your own application
programs. These functions provide a high-level interface to the ADC-16 and perform all required
register-level reads and writes.

The Call Driver is compatible with most BASIC programming languages. Specifically, the Driver
supports the following:

Interpreted BASIC (GWBASIC, BASICA, BASIC) - Section 6.2.

QuickBASIC Versions 4.0 and 4.5 - Section 6.3.

Quick/Professional BASIC Version 7.0 and above - Section 6.3.

QBASIC - Section6.4

Example programs for each of the supported languages are included in the Distribution Software.
You may find it helpful to refer to one or more of these example programs while reading this chapter.

Since the syntax and application of the BASIC languages are different, this chapter describes
programming in each language separately.

Section 6.5 includes a listing of Calls available in the ADC-16 driver. This section is a quick-reference
only. Detailed descriptions of the Calls are in Chapter 7.

6.2 GWBASIC, BASICA, & BASIC

Program Flow
A typical programming sequence is as follows:

1. Initialize the entry pointers to the driver. *
2. Load the driver. *
3. Declare and dimension all variables to be used in the program. *

NOTE: Failure to declare all variables before opening the driver will cause program pointers to
be shifted and the program to fail.

4. Load the ADC-16 hardware configuration, and open the driver. *

5. Initialize the driver and board, and establish communications between the driver and the
program. *

6 - 1

ADC-16 USER GUIDE

6. EITHER

a. Execute a simple ADC-16 operation.

OR

b. Select the desired group of ADC-16 operations, referred to as the group's Frame. Execute
these operations, taking some data.

* Indicates that this function is performed in the "Quick-Start'' programs. (see next section).

Choose Step 6a for simple applications such as performing a single A/D conversion or reading a
digital input port. Choose 6b for more complex operations such as an interrupt-based scan of the
multiple channels.

The following sections describe the various parts of the program flow diagram. However, many
programmers may learn faster simply by referring to the example programs in the Distribution
Software.

Quick-Start Program
To aide in the creation of programs, the Distribution Software includes a Quick-Starf program, which
includes all driver loading, pointer definition, and ADC-16 initialization. For interpreted BASIC, the
Quick-Start program is ADC16.BAS . The program is in standard BASIC source code with an Insert
Your Code Here section.

When you begin a program, it will be easiest to begin with the Quick-Start program and add new
sections to the existing code. The alternative is to struggle through rewriting the driver, pointer, and
initialization code.

Initializing Pointers And Loading The Driver
The last part of Section 6.2 contains a listing of an Interpreted BASIC example program. You may
wish to refer to this example program during the discussions in this section.

In Interpreted BASIC, the driver and a number of pointers to the driver must be loaded within the
program itself. The entry-point variables must be loaded at this time (each command has a unique
entry point). This is performed by a subroutine in ADC16.BAS. Since there are several entry points, it
is recommended that the ADC16.BAS Quick-Start program (or one of the example programs) be used
as the starting point for new programs. This will ensure the correct loading of pointers. The following
statement calls the subroutine that loads the driver entry points.

2 6 0 GOSUB 7 1 0

7 10 &Cl6DEVOPEN%=O
7 2 0 ADCl6GE!FDEVHANDLE%=3

xxx RETURN

6 - 2

CHAPTER 6 THE CALL DRIVER

The following statements then load the driver.

270 DEF SEG = &€I9000
2 8 0 BLOAD "ADC16. BIN", 0

This code loads the driver at 9000h (at the 576K segment) and is usually a good choice. However,
computers with 512 KB or less memory will require loading the driver at a lower address (for
example, 4000h or 5000h).

Initializing The Variables
You must declare all your program variables before opening the driver. Using an undeclared variable
during the program will move the entry points and cause the program to fail. Examples of
declarations are as follows:

3 4 0 ADCl6 = 0 'declare ADC16 as real
3 7 0 DIM A D V a l u e % (2) 'declare an integer array
3 9 0 NumDfBrds%=O: E r r F l a g % = O : BrdNum%=O 'declare integers
400 GAIN%=O: CHAN%=O
410 N$='"' 'declare W$ s t r i n g
402 VEL=O:DIRECT=O:TEMP=O 'declare application

'dependent variables

Opening The Driver
The next step opens the driver, and reads the current configuration file (see Section 2.6) for the ADC-
16 hardware (Base Address, Interrupt Level, input configuration). The ADCl6DevOpen command
performs this function, which is demonstrated (along with other required initialization functions) in
the example program in Section 6.3. The syntax for the ADC16DevOpen function is shown below:

500 N$ = "ADC16.CFG" + CHR$(O) 'Setup filename
510 CALL ADCl6DevOpen% (N$, NumOfBrds%, E r r F l a g %) ' R e a d ADC-16
520 'configuration f i l e

Establish Communications Between The Driver & Program
To allow the use of multiple boards, the Calls require a board identifier for each board. The board
identifier is called a Device Handle, or simply Handle . Without Handles, a KADRead command
would not know which board (in a multi-board system) to call.

The Handle for each board is returned by the ADC16GetDevHandle command after a successful call
to ADC16DevOpen, which is included in the Quick-Start programs. Additional information on the
ADCl6GetDevHandle function (and concept) is as follows:

SINGLE BOARD SYSTEMS

In single-board systems, obtain the Handle via the ADCl6GetDevHandle function. The following
examples show use of the Handle.

6 - 3

ADC-16 USER GUIDE

First, get the Handle, as follows:

539 BrdNum% = 0 '0 since only 1 board in system
540 CALL ADC16GetDevHandle%(BrdNum%,Dev€Iandle,ErrFlag%)

Subsequent calls use the variable DevHandle to select the installed ADC-16.

You may change the variable name DeuHandle to make the program easier to read. For example, the
following program lines reflect a variable change from DeuHundIe to ADCZ 6 .
539 B r a = % = 0 '0 since only 1 board in system
540 CALL ADC16GetDevHandle%(BrdNum%,ADCl6,ErrFlag%)

MULTIPLE BOARD SYSTEMS

In systems with more than one board, you must use more than one Handle. The following example
shows how to obtain and use Handles in a system with two ADC-16s.

530 BrdNum% = 0 'First ADC-16 board
540 CALL ADC16GetDevHandle%(BrdNuxi%,ADCl6A,ErrFlag%)

550 BrdNum% = 1 'Second ADC-16 board
560 CALL ADCl6GetDevHandle% (BrdNum%, ADCl6B, ErrFlag%)

NOTE: In this example, declaration of variables ADC16A and ADC16B should be in the variable-
declaration section.

Subsequent function calls will use either the ADC16A or ADCl6B Handle to determine the selected
board.

Immediate Execution Commands & Frames
Two types of Call commands may be used to control the ADC-16 once the driver is installed and the
Board initialized. These are Immediate Operation commands and Setup or Frame commands.

IMMEDIATE OPERATION COMMANDS

A variety of single-function commands may be executed without any prior setup. The simplest of
these is KADRead , which specifies an input channel, an input gain, and then performs a single A/D
conversion. The syntax for this command is as follows:

620 Gain%=O:Chan%=O
630 CALL =Read% (ADC16A, man%, Gain%, ADValue% (0) , ErrFlag%)
640 PRINT "Board 1 returned",ADValue% (0)

Note that the ADVulue%(O) must be defined as an integer array. The ADCl6A Handle is a single-
precision, real variable and must be declared in the variable declaration section. The actual numeric
value of the Handle is simply a pointer within the driver and should be passed where required.

MULTIPLE BOARD SYSTEMS

Systems with more than one board must use more than one Handle. The following example opens the
Handles for two ADC-16s and then takes an A/D reading from Channel 0 of the first Board and from
Channel 5 of the second.

6 - 4

CHAPTER 6 THE CALL DRIVER

530 BrdNum% = 0 'First ADC-16 board
540 CALL ADC16GetDevHandle%(BrdNum%,ADCl6A,ErrFlag%)

550 BrdNum% = 1 Second ADC-16 board
560 CALL ADC16GetDevHandle%(BrdNum%,ADCl6B,ErrFlag%)

570 m a n % = 0: Gain% = 0
580 CALL KADRead(ADC16A, man%, Gain%, =Value% (0) , ErrFlag%)
590 PRINT "The first ADC-16 returned",ADValue% (0)

600 m a n % = 5: Gain% = 0
610 CALL KADRead(ADC16B, man%, Gain%, ADValue% (0) , E r r F l a g %)
620 PRINT "The second ADC-16 returned",ADValue% (0)

Note that line 580 uses the first ADC-16 Handle as set-up in line 540, while line 610 uses the second
Handle.

Other Immediate operation commands include

KDIRead

KDOWrite

Read the digital inputs.

Write to the digital outputs.

FRAMES

Analog Input and Digital Output allow for operation using Frames. For Digital Output the Frame is a
means of returning the value of the Digital Output port. For Analog Input the Frame is the group of all
setup parameters used in a synchronous or interrupt driven operation. For example, an analog input
Frame requires setting up the following parameters:

Input Channels to scan (Start and Stop channels).

Input Gain.

Number of samples.

Data buffer location.

Program flow is similar in each type of Frame. The standard program flow using Frames is as follows:

First:

Next:

Then:

Optionally:

Open or get a Frame with a KGetADFrame or KGetDOFrame
command.

Setup any parameters required within the Frame.

Execute the desired Frame function.

Check the status of the operation initiated.

The following program segment is similar to the GWBEX7.BAS example program included in the
Distribution Software. It may be helpful to refer to this example program during the following
discussion.

6 - 5

ADC-16 USER GUIDE

Example using Analog Input Frame
10 I Synchronous A/D scan using Start / Stop / Gain parameters
20 STEP 1 : The following is the start up code required to link to the
30 DAS Driver for all Interpreted BASIC programs. A subroutine (The GOSUB
40 800 below) initializes a set of variables critical to the Driver.
80
90 GOSUB 800 I Initialize entry variables
100 DEF SEG = &€I9000 Suggested addtess where to load the Driver
110 BLOAD "ADC16.BIN",O Load the driver
120 I
130 I , ~ ~ ~ ~ ~ , , , ~ , ~ ~ ~ ~ , ~ ~ ~ ~ , , , , , , , ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ - ~

140 I

150
160
170
180
190
200
210
220
230
240
250
260
27 0
280

STEP 2 : Dimension and initialize ALL basic variables first.
Declare ALL additional program variables in this step. You must
avoid declaring and using variables on the fly.

DEVHANDLE=O Declare all handles as Reals
ADSET=O I Analog Input Frame
A$=''
NUMOFBRDS%=O: EWLAG%=O: BRDNUM%=O
DIM BUFFER% (20), SAMPLES% (2)
STARTCHAN%=O
STOPCHAN%=O
GAINCHAN%=O
X%=O
BUFFEROFFSET% = 0

440
450 I

460
470
480
490
500 I

510
52 0
530
540
550
560
57 0
580
590
600
610
620
630
640
650
660

6 - 6

STEP 5 : To perform a FRAME based Analog Input function, first
get a FRAME handle and then initialize the parameters for the
FRAME.

CALL KGETADFRAME% (DEVHANDLE, ADSET, ERRFLAG%)
IF ERRFLAG% <> 0 THEN PRINT "ERROR Is; HEX$(ERRFLAG%) : STOP

STARTCHAN%=O:STOPCHAN%=7:GAIN%=O
CALL KSETSTARTSTOPG% (ADSET, STARTCHAN%, STOPCHAN% , GAIN%, ERRFLAG%)
IF ERRFLAG% <> 0 THEN PRINT "ERROR Is; HEX$(ERRFLAG%) : STOP

SAMpLES%(O) = 0 SAMPLES parameter ignored
BUFFEROFFSET% = VARPTR (BUFFER% (0))
CALL KSETBUF% (ADSET, DATASEG%, BUFFEROFFSET%, SAMPLES% (0) , ERRFLAG%)
IF ERRFLAG% <> 0 THEN PRINT "ERROR 'I; HEX$(ERRFLAG%) : STOP

CALL KSYNCSTART% (ADSET, ERRFLAG%)
IF ERRFLAG% <> 0 THEN PRINT "ERROR HEX$ (ERRFLAG%) : STOP
Display Data
FOR X% = 0 TO (STOPC€IAN%-STARTCHAN%)

IF BUFFER%(X%) AND &€I8000 THEN PRINT BUFFER%(X%) AND &H7FFF
IF (BUFFER%(X%) AND &H8000) = 0 THEN PRINT BUFFER%(X%) * -1

NEXT

CHAPTER 6 THE CALL DRIVER

670
800
810 '
820
830
840
850
860
870
880
890
900
91 0
92 0
93 0
940
950
960
97 0
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

Include the following in all your BASIC programs.
Initialize Driver entry point variables.

ADCl6DEVOPEN% = o
ADCl6GETDEVHANDLE% = 3
KGETADFRAME % = 6
KGETDOFRAME% = 15
KGETVER% = 30
KDASDEVINIT% = 33
KSETIRQMAP% = 36
KE'REEFRAME% = 39
KSETBUF% = 42
KSETSTARTSTOPG% = 54
KGETSTARTSTOPG% = 57
KSETCHN% = 60
KGETCHN% = 63
KSETSTARTSTOPCHN% = 66
KGETSTARTSTOPCHN% = 69
KSETG% = 72
KGETG% = 75
KSETCHNGARY % = 78
KCHRFRAM3% = 129
KINITFRAME% = 132
KSYNCSTART % = 135
KINTSTART% = 147
KINTSTATUS% = 150
KINTSTOP % = 153
KGETDOCURVAL% = 156
KMOVEDATABUF% = 201
KADREAD% = 213
KDIREAD% = 219
KDOWRITE% = 222
KFORMATCHNGARYB = 225
KRESTORECHNGARY % = 228
KCLEARFRAME% = 231
DATASEG% = &HFFFF
RETURN

The KGETADFRAME call is used to open the frame with the variable name ADSET for the ADC-16
board referred to by variable DEVHANDLE. The FRAME is filled with the start-stop channels and
gain using the call KSETSTARTSTOPG. The data location for the acquisition is established by
KSETBUF. The number of samples taken in this example is determined by the start and stop channels
and the SAMPLES parameter in the KSETBUF call is ignored. With all the FRAME parameters
completed in ADSET, the acquisition is initiated by a call to KSYNCSTART.

A program can define multiple frames. For example, an application may define a FRAME with
different start-stop channels or use KSETCHNGARY to define a FRAME with the gain and channel
sequence specified in a channel gain array.

6.3 QUICKBASIC 4.0 +, INCLUDING PROFESSIONAL BASIC 7.0 +

Program Flow
A typical programming sequence is as follows:

1. Load the driver (from the QB command line).

2. $INCLUDE: the driver function declarations. *
3. Declare and dimension all variables that will be used in the program. *

6 - 7

ADC-16 USER GUIDE

NOTE: Failure to declare all variables before opening the driver will cause the program
pointers to be shifted and will cause the program to fail!!!

4. Load the ADC-16s hardware configuration, and open the driver. *
5 . Initialize the driver and board, and establish communications between the driver and program.*

6. EITHER

a. Execute a simple ADC-16 operation.

OR

b. Select the desired group of ADC-16 operations, referred to as the group's Frame. Execute
these operations, taking some data.

* Indicates that this function is performed in the "Quick-Start'' programs. (see next section)

Choose Step 6a for simple applications such as performing a single A/D conversion or reading a
digital input port. Choose Step 6b for more complex operations (an interrupt-based scan of the
multiple channels).

The following sections describe the various parts of the flow diagram. However, many programmers
will learn faster by simply referring to the various example programs supplied with the ADC-16.

Quick-Start Program
To aide in the creation of programs, the Distribution Software includes a Quick-Sfarf program. This
program includes all driver loading, pointer definition, and ADC-16 initialization; it is provided as
standard QuickBASIC source code with an Insert Your Code Here section. The Quick-Start program
for QuickBASIC versions is QUICKBAS.BAS QuickBASIC Version 4.0 or greater and/or
Professional BASIC Version 7.0 or greater.

In your initial programming efforts, start with this program and add new sections to the existing code.
This should prove simpler than going through the effort to rewrite the driver, pointer and
initialization code.

Loading & Including The Driver
In QuickBASIC, the driver needs to be loaded at the QB command line. This procedure is as follows:

QB /L ADCl6QB. QLB

In Quick/Professional BASIC Version 7.0 and greater, use

QBX /L ADCl6QBX.QLB

The program itself will also need to contain the following INCLUDE statement.

QuickBASIC Versions 4.0 and 4.5

$INCLUDE: 'Q4IFACE.BI'

6 - 8

CHAPTER 6 THE CALL DRIVER

Quick/Professional BASIC Version 7.0 and greater

$INCLUDE: 'Q7IFACE.BI'

Initializing The Variables
Declare all variables before opening the driver. Examples of declarations include:

DIM GAIN, CHAN AS INTEGER - declare a variable type
DIM NumDfBrds AS INTEGER
DIM ADCl6 AS LONG - declare long (32-bit) integers
DIM ADValue AS LONG
DIM A$ - declare A as a string
VEL=O:DIRECT=O:TEMP=O - declare application variables

Don't Forget!! Declare all variables before opening the driver. Using an undeclared variable in the
program body (even the I in a simple FOR I= 1 to 1 0 :NEXT I loop) causes shifting of
device pointers and results in program failures!!

Opening The Driver
The next step opens the driver, and reads the current configuration file for the ADC-16 hardware
(Base Address, Interrupt Level, input configuration). (This file is created using the ADCl6CFG.EXE
file (described in Chapter 2).) The ADC16DevOpen command performs this function. This function,
as well as the other required initialization functions are shown in the example program at the end of
this section. The syntax for this call is as follows:

A$ = "ADC16.CFG" + CHRS(0) 'read ADC-16 config file
Derr = ADCl6DEVOPEN% (SSEGADD (A$), NumOfBrds) 'execute the call

The SSEGADD command tells the driver where to look for the ADC-16 configuration information.
SSEGADD is a standard command in Prof./QuickBASIC Version 7.0 and above; but it is not defined
in standard QB Version 4.5 or lower. However, our Version 4.0 and 4.5 drivers define the SSEGADD
function.

Establish Communications Between The Driver & Program
To allow the use of multiple boards, the Calls require a board identifier for each oard. The board

would not know which board (in a multi-board system) to call. The board Handle is the first
parameter in each of the AX-16 function calls.

identifier is called a Device Handle, or simply Handle . Without Handles, a KA B Read command

The Handle for each board is returned by the ADC16GetDevHandle command after a successful call
to ADC16DevOpen, which is included in the Quick-Start programs. Additional information on the
ADC16GetDevHandle function (and concept) follows.

6 - 9

ADC-16 USER GUIDE

SINGLE BOARD SYSTEMS

In single-board systems, the Handle is straightforward. The Handle is obtained via the ADC-16
GetDevHandle function. The following examples describe how the Handle is used.

First, get the handle, as follows:

BrdNum = 0 '0 since only 1 board in system
Derr = ADCl6GetDevHandle% (BrdNum, DevHandle)

(where Derr contains the error status)

Subsequent calls use the variable DmHundle to select the installed AX-16.

The variable name DmHundle may be changed to make the program easier to read. For example, a
variable change from DmHundle to ADCl6 is reflected in the following program lines.

BrdNum = 0 '0 since only 1 board in system
Derr = ADCl6GetDevHandle% (BrdNum, ADCl6)

MULTIPLE BOARD SYSTEMS

In systems with more than one board, you must use more than one Handle. The following example
shows how the Handles are obtained and used in a system with two ADC-16s.

BrdNum = 0 'First ADC-16 board
Derr = ADCl6GetDevHandle% (BrdNum, ADCl6A)

BrdNum = 1 'Second ADC-16 board
Derr = ADCl6GetDevHandle% (BrdNum, ADCl6B)

Subsequent function calls will use the ADCl6A or ADC16B Handle for either Board to determine the
selected board.

Immediate Execution Commands & Frames
Two types of Call commands will control the AX-16 once the board and the driver are installed and
initialized. These are Immediate Operation commands and Setup or Frame commands.

IMMEDIA TE OPERA TION COMMANDS

Several single-function commands may be executed without any prior set-up. The simplest of these is
the KADRead command that selects an input channel, an input gain, and then performs a single
A/D conversion. The syntax for this command is as follows:

Chan = 0: Gain = 0
Derr = -Read% (DevHandle, Chan, Gain, ADValue)
PRINT "The A/D returned", ADValue

Note that the ADVulue and the DmHandle are Long Integers and must be declared in the variable
declaration section. The ADC-16 data is returned in the least significant fifteen bits of ADValue, if bit
sixteen is zero multiply the data by minus one.

6 - 1 0

CHAPTER 6 THE CALL DRIVER

MULTIPLE BOARD SYSTEMS

In systems with more than one board, more than one Handle must be used. The following example
opens the handles for two AX-16s and then takes an A/D reading from Channel 0 of the Board 1 and
from Channel 5 of Board 2.

BrdNum = 0 'First board
Derr = ADCl6GetDevHandle% (BrdNum, ADCl6A)

BrdNum = 1 'Second board
Derr = ADC16GetDevHandle%(BrdNum,ADCl6B)

Chan = 0: Gain = 0
Derr = KADRead%(ADC16A, Chan, Gain, ADValue)
PRINT "The first Board returned", ADValue
Chan = 5: Gain = 0
Derr = KADRead%(ADC16B, Chan, Gain, ADValue)
PRINT "The second Board returned", ADValue

Note that the first KADread uses the Handle of the first Board as Set up with BrdNum = 0, while the
second KADRead uses the second Handle.

Other Immediate Operation commands include

KDIRead

KDO Write

Read the digital inputs

Write the digital outputs

FRAMES

Analog Input and Digital Output allow for operation using Frames. For Digital Output the Frame is a
means of returning the value of the Digital Output port. For Analog Input the Frame is the group of all
setup parameters used in a synchronous or interrupt driven operation. For example, an A/D function
requires setting up the following parameters:

Input Channels to scan (Start and Stop channels).

InputGain.

Number of samples.

Data buffer location.

A complete set of selections is a Frame. A complete definition of the above parameters would be
included in an A/D frame. Two types of Frames are available for the ADC-16, as follows: A/D
Frames and Digital Output Frames.

Program flow is similar in each type of Frame, as follows:

First:

Next:

Then:

Optionally:

Open or get a Frame with KGetADFrame or KGetDOFrame.

Setup the parameters within the Frame.

Execute the desired Frame function.

Check the status of the operation initiated.

6- 11

ADC-16 USER GUIDE

The following program example is similar to the QBEXAMP7.BAS example in the Distribution
Software. It may be helpful to refer to the example during the following discussion.

Example Program Analog Input Frame
STEP 1 : Include the supplied Q4IFACE.BI (or Q7IFACE.BI). The

1 INCLUDE file contains all function declarations supported by
1 the driver.
1

$INCLUDE: 'Q4IFACE.BI'

1-,,,,,,,,,,,,,--

STEP 2 : Define ALL local variables required by the program here. NOTE
that you must avoid declaring and using QuickBASIC variables on the

I fly.

DIM BUFFA(20) AS INTEGER
DIM NumDfBoards AS INTEGER
DIM DERR AS INTEGER
DIM DEVHANDLE AS LONG
DIM ADSET AS LONG
DIM STATUS AS INTEGER
DIM COUNT AS LONG
DIM LONGADD AS LONG
DIM StopChan AS INTEGER
DIM StartChan AS INTEGER
DIM GGAIN AS INTEGER
DIM BoardNm AS INTEGER
DIM Samples AS INTEGER
I% = 0

BoardNum = 0
DERR = ADCl6GETDEVHANDLE% (BoardNum, DEVHANDLE)
IF DERR <> 0 PRINT "ERROR, DEVICE HANDLE IS null. . . ' I : STOP

SAMpLES=O I ADCl6 does not use the SAMPLES parameter
DERR = KSetBuf% (ADSET, BUFFA(0) , Samples)
IF DERR <> 0 THEN PRINT "ERROR ' I ; HEX$ (DERR) : STOP

DERR = KSetChnGAry% (ADSET,
IF DERR <> 0 THEN PRINT "ERROR ' I ; HEX$ (DERR) : STOP

CHANGAINARRAY (0))

StartChan=O:StopChan=7:GGAIN=O
DERR = KSetStartStopG% (ADSET, StartChan, StopChan, GGAIN)
IF DERR <> 0 THEN "ERROR 'I; HEX$ (DERR) : STOP
DERR = KSyncStart% (ADSET)
IF DERR <> 0 THEN PRINT "ERROR ' I ; HEX$ (DERR) : STOP

6 - 1 2

CHAPTER 6 THE CALL DRIVER

DERR = KSyncStart% (ADSET)
I F DERR <> 0 THEN PRINT "ERROR 'I; HEX$ (DERR) : STOP

DERR = KFreeFrame% (ADSET)
I F DERR <> 0 THEN BEEP: PRINT "ERROR 'I; HEX$ (DERR) : STOP

FOR I% = 0 TO (STOPCHAN-STARTCHAN)

NEXT I
PRINT HEX$ (BUFFA (1%))

END

The KGETADFRAME call is used to open the frame with the variable name ADSET for the ADC-16
board referred to by variable DEVHANDLE. The FRAME is filled with the start-stop channels and
gain using the call KSETSTARTSTOPG. The data location for the acquisition is established by
KSETBUF. The number of samples taken in this example is determined by the start and stop channels
and the SAMPLES parameter in the KSETBUF call is ignored. With all the FRAME parameters
completed in ADSET, the acquisition is initiated by a call to KSYNCSTART.

A program can define multiple frames. For example, an application may define a FRAME with
different start-stop channels or use KSetChnGAry to define a FRAME with the gain and channel
sequence specified in a channel-gain array.

6.4 QBASIC

Program Flow
A typical programming sequence is as follows:

1.

2.

3.

4.

5.

6.

Initialize the pointers to the driver. *
Load the driver. *
Declare and dimension all variables that will be used in the program. Failure to declare all
variables before opening the driver will cause the program pointers to be shifted and will
cause the program to fail!!! *
Load the ADC-16s hardware configuration and open the driver. *
Initialize the driver and board and establish communications between the driver and the
programming language. *
EITHER

a. Execute a simple ADC-16 operation.

OR

b. Select the desired group of ADC-16 operations referred to as the group's Frame . Execute the
operations, taking some data.

* Indicates that this function is performed in the "Quick-Start'' programs. (see next section)

Choose Step 6a for simple applications such as performing a conversion or reading a digital input
port. Choose Step 6b for more complex operations.

The following sections will describe the various parts of the flow diagram. However, many
programmers will learn faster by referring to the example programs supplied with the ADC-16
Distribution Software.

6 - 1 3

ADC-16 USER GUIDE

Quick-Start Program
To aide in the creation of programs, the Distribution Software includes a Quick-Start program, which
includes all driver loading, pointer definition, and ADC-16 initialization. For interpreted BASIC, the
Quick-Start program is QBASIC.BAS . The program is in standard BASIC source code with an Insert
Your Code Here section.

When you program the AX-16, begin with the Quick-Start program and add new sections to the
existing code. This alternative should be easier than rewriting the driver, pointer, and initialization
code.

Declaring The Variables
You must declare all program variables before opening the driver. Declare each of the driver
functions as integer variables. The end of this section contains a listing of an Interpreted BASIC
example program. It may be helpful to refer to this example program during the discussions in this
section.

Neglecting to declare all variables will result in a program failure. Declaration examples are as
follows:

'Declare the driver functions
D I M DriverArray(22000) AS INTEGER 'Dimension an array t o

'hold the driver

DIM ADCl6DEVOPEN AS INTEGER 'Declare the driver
'function names
'as integer variables

D I M KRESTORECHNGARY AS INTEGER

'Declare a l l variables used i n the program
DIM NumOfBrds AS INTEGER - declare integer variables
D I M D e r r AS INTEGER
D I M Gain AS INTEGER
DIM Chan AS INTEGER
DIM BrdNum AS INTEGER
DIM A$ - declare A as a string
D I M ADValue AS LONG - declare long variables
D I M ADCl6 AS LONG
VEL=O:DIRECT=O:TEMP=O - declare standard real variables

Do not Forget!! Declare all variables prior to opening the driver. Using an undeclared variable in the
program body (even the I in a simple FOR I= 1 to 1 0 :NEXT I loop) will cause device
pointers to be shifted, and will result in program failures!!

Initializing Pointers & Loading The Driver
In QBASIC, the driver and a number of pointers to the driver are loaded within the program itself.
The first task is to load the entry point variables (each command has a unique entry point), using a
subroutine in QBASIC.BAS. Since there are several entry points, it is recommended that the
QBASIC.BAS Quick-Start program (or one of the example programs) be used as the starting point for
new programs. This will ensure that the pointers are loaded correctly. The following statement calls
the subroutine which loads the driver entry points.

Callsetup ' c a l l subroutine t o load driver pointers

6 - 1 4

CHAPTER 6 THE CALL DRIVER

Next, load the driver.

DEF SEG = VARSEG (DriverArray (0))
BLOAD "ADC16Q. BIN", 0

Opening The Driver
The next step opens the driver and reads the current configuration file for the ADC-16 hardware (Base
Address, Interrupt Level, input configuration). (This file is created using the ADC16CFG.EXE file
described in Chapter 2.) ADC16DevOpen performs this function. ADC16DevOpen and the other
required initialization functions are shown in the example program at the end of this section. The
syntax for this function is as follows:

A$ = "ADC16.CE'G" + CHR$ (0) 'read ADC-16 config file
CALL ABSOULUTE(A$, NuarOfBrds, DERR, ADCl6DEVOPEN) 'execute the call

Establish Communications Between The Driver & Program
To allow the use of multiple boards, the function calls require an identifier for each board. A board
identifier is called a Device Handle or simply Handle . Without the Handle, a KADRead command
in a multiboard system would not know which board to call. The board Handle is the last parameter
in each of the ADC-16 QBASIC calls.

The Handle for each board is returned by the ADC16GetDevHandle command after a successful call
to ADC16DevOpen. This command is included in the Quick-Start programs. Additional information
on this function (and concept) is provided in the following paragraphs.

SINGLE BOARD SYSTEMS

In single-board systems the Handle is very straightforward. The Handle is obtained via the
ADC16GetDevHandle command. The following examples describe how the Handle is used.

First, Get the handle.

NumOfBrds% = 0 '0 since only 1 board in system
CALL ABSOLUTE(NumOfBrds,DevHandle,Derr,ADCl6GetDevHandle)

(The variable Derr contains the error status)

Subsequent calls use the variable DeuHundIe to select the installed ADC-16.

The variable name DeuHundle may be changed to make the program easier to read. For example, a
variable change from DeuHundle to ADCl6 is reflected in the following program.

BrdNum = 0 ' 0 since only 1 board in system
CALL ABSOLUTE(BrdNum,ADCl6,Derr,ADCl6GetDevHandle)

6 - 15

ADC-16 USER GUIDE

MULTIPLE BOARD SYSTEMS

Systems with more than one boarc must use more than one Handle. The following example shows
how to obtain and use the Handles in a system with two ADC-16s.

BrdNum = 0 'First board
CALL ABSOLUTE (BrdNum, ADCl6A, Derr, ADCl6GetDevHandle)

BrdNum = 1 'Second board
CALL ABSOLUTE (BrdNum, ADCl6B, Derr , ADCl6GetDevKandle)

Subsequent calls would use the Handles of either Board (ADC16A or ADC16B) to determine the
selected board.

TYPES OF CALL COMMANDS

Two types of Call commands are available to control the ADC-16 once the board and the driver are
installed and initialized. These are Immediate Operation commands and Frame based commands.

IMMEDIATE OPERATION COMMANDS

Several single-function commands may be executed without any prior setup. The simplest of these is
KADRead , which selects an input channel, an input gain, and then performs a single A/D
conversion. The syntax for this command is as follows:

For a single A/D conversion on Channel 0 with Gain Range 0, the call would be

Chan = 0: Gain = 0
CALL ABSOLUTE (DevHandle, Chan, Gain, ADValue, Derr, KADRead)
PRINT "The A/D returned", ADValue

Note that the ADVulue and the DevHandle are Long Integers and must be declared in the variable
declaration section. The ADC-16 data is returned in the least significant fifteen bits of ADValue, if bit
sixteen is zero multiply the data by minus one.

MULTIPLE BOARD SYSTEMS

Systems with more than one board must use more than one Handle. The following example takes an
A/D reading from Channel 0 of the first Board and Channel 5 of the second.

BrdNum = 0 'First board
CALL ABSOLUTE(BrdN~,ADCl6A,Derr,ADCl6GetDevHandle)

BrdNum = 1 'Second board
CALL ABSOLUTE (BrdNum, ADCl6B, Derr , ADCl6GetDevHandle)
Chan = 0: Gain = 0
CALL ABSOLUTE(ADC16A, Chan, Gain, ADValue, Derr, KADRead)
PRINT "The first Board returned", ADValue

Chan = 5: Gain = 0
CALL ABSOLUTE(ADC16B, Chan, Gain, ADValue, Derr, KADRead)
PRINT "The second Board returned", ADValue

6 - 16

CHAPTER 6 THE CALL DRIVER

Note that the first KADread uses the first Board Handle as set up with BrdNum = 0 while the second
KADRead uses the second Handle.

Other Immediate Operation commands include

KDIRead

KDOWrite

Read the digital inputs.

Write to the digital outputs.

FRAMES

Analog Input and Digital Output allow for operation using Frames. For Digital Output the Frame is a
means of returning the value of the Digital Output port. For Analog Input the Frame is the group of all
setup parameters used in a synchronous or interrupt driven operation. For example, an A / D function
requires setting up the following parameters:

Input Channels to scan (Start and Stop channels).

Input Gain.

Number of samples.

Data buffer location.

Program flow is similar in each type of Frame, as follows:

First:

Next:

Then:

OPtiOMlly:

Open or get a Frame with KGetADFranie or KGetDOFrame.

Setup the parameters within the Frame.

Execute the desired Frame function.

Check the status of the operation initiated.

The following program segment is similar to the QBASEX7.BAS example in the Distribution Software.
It may be helpful to refer to the during the following discussion.

Example using Analog Input Frame
I Synchronous A/D scan using S t a r t / Stop / G a i n parameters

I STEP 1 : ALWAYS INCLUDE AND DECLARE THE SUB C a l l S e t u p O .
~--------------,---,,,,,,,,_,,,,,,,_____----------------------

1

I

It is SUPPLIED TO YOU WITHIN THE EXAMPLE PROGRAMS AND
MUST BE INCLUDED I N ALL OF YOUR OWN QBASIC PROGRAMS.

DECLARE SUB Cal lSe tup ()

STEP 2 : ALWAYS DIMENSION AN ARRAY TO LOAD THE DRIVER INTO.
I THE DRIVER WILL OCCUPY APPROXIMATELY 42000 BYTES.

DIM D r i v e r A r y (2 2 0 0 0) AS INTEGER A r r a y to hold driver C o d e

.

I STEP 3 : ALWAYS INCLUDE THE FOLLOWING D E F I N I T I O N S I N YOUR PROGRAM

DIM SHARED ADCl6DEVOPEN AS INTEGER, ADCl6GETDEVHANDLE AS INTEGER
DIM SHARED KGETADFRAME A S INTEGER, KCLEARFRAME AS INTEGER
DIM SHARED KGETVER AS INTEGER, KDASDEVINIT AS INTEGER

6 - 1 7

ADC-16 USER GUIDE

DIM SHARED KFREEFRAME AS INTEGER, KSETBUF AS INTEGER
DIM SHARED KSETSTARTSTOPG AS INTEGER, KGETSTARTSTOPG AS INTEGER
DIM SHARED KSETCHN AS INTEGER, KGETCHN AS INTEGER
DIM SHARED KSETSTARTSTOPCHN AS INTEGER
DIM SHARED KGETSTARTSTOPCHN AS INTEGER
DIM SHARED KSETG AS INTEGER, KGETG AS INTEGER
DIM SHARED KSETCHNGARY AS INTEGER
DIM SHARED KCHKFRAME AS INTEGER
DIM SHARED KINITFRAME AS INTEGER, KSYNCSTART AS INTEGER
DIM SHARED KINTSTART AS INTEGER
DIM SHARED KINTSTATUS AS INTEGER, KINTSTOP AS INTEGER
DIM SHARED KGETDOFRAME AS INTEGER, KGETDOCURVAL AS INTEGER
DIM SHARED KMOVEDATABUF AS INTEGER
DIM SHARED =READ AS INTEGER
DIM SHARED KDIREAD AS INTEGER, WOWRITE AS INTEGER
DIM SHARED KFORMATCHNGARY AS INTEGER
DIM SHARED KRESTORECHNGARY AS INTEGER

-
STEP 4 : Define ALL l oca l var iables required by t h e program.

1 Avoid & d a r i n g and using QBASIC variables on t h e f l y .

DIM NUMOFBRDS AS INTEGER rds defined i n .CFG f i l e
DIM ERRE'LAG AS INTEGER Holds function e r r o r re turns
DIM DEVHANDLE AS LONG Device Handle - a l l handles a re 4 bytes
DIM ADFRAME AS LONG
DIM STARTCH AS INTEGER
DIM STOPCH AS INTEGER
DIM GAIN AS INTEGER
DIM X AS INTEGER
DIM DATABUFFER(20) AS INTEGER
DIM Samples AS LONG
DIM BRDNUM AS INTEGER

Call Setup I n i t i a l i z e en t ry var iables
DEF SEG = VARSEG(DriverAry(0)) G e t locat ion of user array, and
BLOAD "ADC16Q. BIN", 0 Load t h e dr iver i n t o user array

I,,---,,,,,,,,,,--,--

! STEP 6 : I n i t i a l i z e t h e in t e rna l data tables with the information
I contained i n t h e configuration f i l e ADCl6.CFG.

A$ = "ADC16.CE'G" + CHR$(o)
CALL ABSOLUTE (A$, NUMOFBRDS, ERRE'LAG, ADCl6DEVOPEN)
IF ERRE'LAG <> 0 PRINT "ERROR It; HEX$(ERRFLAG) : STOP

BRDNTJM = 0
CALL ABSOLUTE (BRDNUM, DEVHANDLE, ERRFLAG, ADCl6GETDEVHANDLE)
IF (ERRFLAG <> 0) THEN PRINT "ERROR HEX$ (ERRFLAG) : STOP

I,,,---,,,,,-,,,,,,,,,,,,,--

STEP 8 : To perform a FRAME based Analog Input function, f irst
1 get a FRAME handle and then i n i t i a l i z e the parameters f o r
I t he FRAME.

CALL ABSOLUTE (DEVHANDLE, ADSET, ERRE'LAG, KGETADFRAME)
IF ERRFLAG <> 0 THEN PRINT "ERROR 'I; ERRFLAG: STOP

6 - 1 8

CHAPTER 6 THE CALL DRIVER

STARTCH = 0: STOPCH = 7: GAIN = 0
CALL ABSOLUTE (ADSET,
IF ERRE'LAG <> 0 THEN

SAMPLES = 0 ADC-16
CALL ABSOLUTE (ADSET,
IF ERRE'LAG <> 0 THEN

CALL ABSOLUTE (ADSET,
IF ERRE'LAG <> 0 THEN

CALL ABSOLUTE (ADSET,
IF ERRFLAG <> 0 THEN

STARTCH, STOPCH, GAIN, ERRFLAG, KSETSTARTSTOPG)
PRINT "Error It; ERRFLAG : STOP

does not use the SAMPLES parameter
DATABUFFER () , SAMPLES, ERRFLAG, KSETBUF)
PRINT "Error ''; ERRFLAG : STOP

ERRFLAG, KSYNCSTART)
PRINT "Error # It; ERRFLAG; STOP

ERRFLAG, KFREEFRAME)
PRINT "Error It; ERRFLAG; STOP

FOR X = 0 TO (STOPCH-STARTCH)

NEXT
PRINT HEX$ (DATABUFFER(X))

END

SUB Callsetup

Initialize entry point Variables

ADCl6DEVOPEN = 0
ADCl6GETDEVHANDLE = 3
KGETADFRAMF, = 6
KGETDOFRAME = 15
KGETVER = 30
KDASDEVINIT = 33
KSETIRQMAP = 36
KE'REEFRAME = 39
KSETBUF = 42
KSETSTARTSTOPG = 54
KGETSTARTSTOPG = 57
KSETCHN = 60
KGETCHN = 63
KSETSTARTSTOPCHN = 66
KGETSTARTSTOPCHN = 69
KSETG = 72
KGETG = 75
KSETCHNGARY = 78
KCHKFRAME = 129
KINITFRAME = 132
KSYNCSTART = 135
KINTSTART = 147
KINTSTATUS = 150
KINTSTOP = 153
KGETDOCURVAL = 156
KMOVEDATABUF = 201
KADREAD = 213
KDIREAD = 219
KDOWRITE = 222
RFORMATCHNGARY = 225
KRESTORECHNGARY = 228
KCLEARFRAME = 231

END SUB

The KGETADFRAME call is used to open the frame with the variable name ADSET for the ADC-16
board referred to by variable DEVHANDLE. The FRAME is filled with the start-stop channels and
gain using the call KSETSTARTSTOPG. The data location for the acquisition is established by
KSETBUF. The number of samples taken in this example is determined by the start and stop channels
and the SAMPLES parameter in the KSETBUF call is ignored. With all the FRAME parameters
completed in ADSET, the acquisition is initiated by a call to KSYNCSTART.

6 - 1 9

ADC-16 USER GUIDE

A program can define multiple frames. For example, an application may define a FRAME with
different start-stop channels or use KSETCHNGARY to define a FRAME with the gain and channel
sequence specified in a channel-gain array.

6.5 LIST OF CALLS
This list groups the Calls according to the categories of Driver lnitiuliuztion , General Driver Functions ,
Frame Management, Operating Funcfions , and Frame Parameters . For definitions of Call Driver terms,
refer to Section 6.6.

Driver Initialization
These functions are mandatory and are typically called once, at the beginning of the application
program, before all other driver function calls. The Driver Initialization functions first verify that the
Board is at the selected base I/O address, and then they initialize both the hardware and software.
ADC-16 Driver Initialization functions are as follows:

ADC16DevOpen

ADClbGetDevHandle

KDASDevInit

Initialize a DAS driver using a configuration file.

Get a handle to the logical device associated with an adapter card.

Initialize a DAS driver and all aspects of the Board to a defined state.

General Function
KGetVer Get driver specification and driver revision levels.

Frame Management
To perform multiple-sample Analog 1 / 0 or Digital Output, you must first get a Frame from the driver
through a Frame Management call. After obtaining a particular frame, you set it up using both the
Frame Management and Parameter Functions.

KGet ADFrame

KGetDOFrame

KChkFrame

KFreeFrame

KInitFrame

KClearFrame Clears the specified frame.

Get a logical Frame for Analog to Digital (A/D) operations.

Get a logical Frame for Digital Output operations.

Check the parameters in a frame for validity.

Release a no longer used frame to the driver.

Initializes the specified frame to a predefined state.

Operating Functions
iMMEDiATE OPERATlONS

The following functions do not require a Frame.

KADRead Read a single A/D input value.

6 - 2 0

CHAPTER 6 THE CALL DRIVER

KDIRead

KDOWrite

Read a single Digital Input value.

Write a single Digital Output value.

FRAME OPERATIONS

Once a Frame is set up for a particular operation, that operation is ready to be initiated by a Call to one
of the following functions.

KSyncStart Perform a synchronous input operation.

KIntStart

KIntStatus

Start an interruptdriven operation. You should specify Start & Stop
Channels, buffering, number of conversions, gain, etc. prior to this call.

Monitor the interrupt-driven operation associated with a particular
frame.

KIntStop

KGetDOCurVal

Halt the interrupt-driven operation associated with a particular frame.

Retrieve the digital output value assigned to a Digital Output frame.

Frame Parameters
After using a Frame Management function to obtain a Frame, you use a Frame Parameter Function to
set up its parameters. For example, after using KGetADFrame to obtain an A/D Frame, you would
use Frame Parameter functions to set up the analog input channels to be sampled, the gain to apply to
these channels, the A/D sampling rate, etc.

KSetChn

KGetChn

Specify a channel for single channel DigitaVAnalog Input/Output
operation.

Obtain the single channel associated with a particular frame. If a
multiple channel frame is specified, the start channel is returned.

KSetStartStopChn

KGetStartStopChn

KSetG Set the Gain code.

KGetG Get the Gain code.

KSetStartStopG

KGetStartStopG

Set the Start and Stop channels for A/D input associated with a
particular frame.

Get the Start and Stop channels for A/D input associated with a
particular frame.

Specify the start channel, stop channel for A/D input, and overall gain
for a particular frame.

Obtain the start channel, stop channel for A/D input, and overall Gain
code associated with a particular frame.KSetChnGAry Insert an A/D
channel gain list into a frame.

Changes format of channel gain array data from integer to unsigned
bytes.

Changes format of channel gain array data from unsigned bytes to
integer.

KFormatChnGAry

KRes toreChnG Ary

6 - 2 1

ADC-16 USER GUIDE

6.6 GLOSSARY OF CALL TERMS

Frame
A Frame is a boardconfiguration template for a particular operation; it contains all the parameter
information needed to configure the board for that operation. For example, an Analog-to-Digital
(A/D) Frame contains parameters for configuring a board to perform an A/D acquisition. A/D
Frame parameters include the channel(s) to scan, the gain code, the buffer location for acquired data,
and the code for determining whether the acquisition is to be Interrupt driven, etc. A/D operations,
Digital Output (DO) operations, etc. each require a separate Frame.

Logical Device
A Device is a grouping of several frames. Thus, a Device may include an A/D Frame, a Digital Input
Frame, a Digital Output Frame, etc. If a Device also contains all the fundamental configuration data
(Base Address, Interrupt Level, etc.) for a particular board, it is unique to that board and is therefore a
Logical Device.

Device Handle
A Device Handle is an identifier for a Logical Device. Each board in a system is assigned its own
Device Handle. To obtain a Device Handle for a particular board, use ADC16GetDevHandle with
the board's physical ID number. This Call returns a Device Handle unique to that board and its
Device.

Frame Handle
Once a Logical Device has a Device Handle, you may specify a Frame by a Frame Handle. A Frame
Handle is an identifier for a particular Frame and is acquired using KGetxxFrame (the xx specifies
AD or DO) for A/D input or Digital Output frames.

Memory Handle
A Memory Handle identifies a block of memory assigned for a Frame. Calls that operate on memory
require a Memory Handle to designate the particular block of memory to be affected.

6 - 22

CHAPTER 7

INDIVIDUAL CALL DESCRIPTIONS

This chapter provides a full description of each Call as used for the BASIC languages (Interpreted
BASIC, QuickBASIC, and QBASIC). Note that throughout this manual,

Interpreted BASIC = BASIC, BASICA , and GW BASIC .

Descriptions are in the alphabetical order of the Call names.

Each of the descriptions discusses the following subjects: Purpose, format , in parameters , out
parameters , return values , see also , comments , and examples .

In each of the Call descriptions, format is in the form

Returnvalue = FunctionName(Parameter 1 I * * * I Parameter n)

and does not reflect the syntax for any language. Under this scheme, examples reflect the syntaxes
for their respective languages and takes the forms

Interpreted BASIC xxl0 CALL FunctionName (Parameterl, , ParameterN, Returnvalue)

QuickBASIC Returnvalue = FunctionName (Parameterl, , PararneterN)

QBASIC CALL ABSOLUTE (Parameter1 , , ParanmterN, Returnvalue, E’unctionName)

* * +

Note On Handle-Type Variables!
Many of the functions described in this chapter require the use of Handles. In Interpreted BASIC, this
variable is a single-precision floating-point value (the default variable type!); however, in QuickBASIC
and QBASIC, this value may also be declared as a long integer, as shown in the example programs of
this chapter. In either case, a Handle is a 4-byte user-declared variable used strictly by the software
driver.

* * *

7 - 1

ADC-16 USER GUIDE

Purpose

format

entry parameters

return value

see also

comments

Examples

Interpreted BASIC

QuickBASIC

QBASIC

ADCl 6DevOpen

Driver Initialization. Initialize a DAS driver via a configuration file.

DASErr = ADC16DevOpen(CfgFile, NumberOfBoards) :

Cf gFil e = you have three options:

1. S p e c i f y the name of the file created with the Configuration Program (see Chapter
2 Section 2.5). The address of the ASCII string containing configuration file name is
what is actually passed.
2. S p e c i f y -1 to tell the driver you are using the default factory configuration.
3. S p e c i f y 0 (NULL pointer) to tell the driver to use the default configuration file
name (ADC16.CFG).

N u m b e r O f B o a r d s = an integer value that determines the number of boards in the
system (2 or 2); see comments for restrictions.

exit parameters None.

DASErr = error code number; 0 if no error

ADC16GetDevHandle.

The A X 1 6 driver supports up to two physical boards simultaneously, except from
Interpreted BASIC where only one board is supported. If the configuration file
defines two boards, Interpreted BASIC supports only the first.

NOTE: RELAYS ARE SET TO NORMALLY CLOSED.

* * *

xxx10 A$ = "ADC16.CFG"+CHR$(O)

xxx20 CALT, ADClCDeVOpen% (A$, NumberOfBoards%, DASErr%)

A$ = "ADC16. CFG"+CBR$ (0)
DASErr% = ADClCDEVOPEN% (SSEGADD (A$), "MOE'BOARDS%)
IF DASErr% 0 0 THEN BEEP: STOP:

CfgName$ = " ADCl6. CFG"+CEIR$ (0)
CALL ABSOLUTE (CfgNameS, NumberOfBoards , DASErr, ADCl 6DevOpen)

* * *

7 - 2

CHAPTER 7 : INDIVIDUAL CALL DESCRIPTIONS - ADCl GGetDevHandle

Purpose Driver Initialization. Get a handle to the logical device associated with an adapter
card.

fOflllat D a s E r r = ADCl6GetDevHandle (BoardNum, D e v H a n d l e) :

entry parameters BoardNum = a board ID number. The first board is BoardNum = 0, the last is
BoardNum = NumberOfBoards-1 , where NumberOfBoards is obtained from
ADC16DevOpen.

exit parameters DevHand l e = a unique handle identifier for a logical DAS device.

return value DASErr = error code number; 0 if no error.

see also ADC16DevOpen.

comments ADC16GetDevHandle returns a unique device handle for identifying a specific
ADC-16 board. Multiple-board applications know how many devices are available
for the current session as a result of the previous Call using ADC16DevOpen.
Associating subsequent Calls with specific boards requires a handle.

+ + +

Examples

InterpretedBASIC xxxl0 BoardNuxn% = 0
xxx20 CALL ADClCGetDevHandle% (BoardNum%, DevHandle, DASErr%)

QuickBASIC DASErr = ADCl6GETDEVBANDLE% (0, DevHandle) 'Board #O
IF (DasErr 0 0) THEN BEEP: STOP:

QBASIC BoardNum = 0
DIM DevEandle AS LONG
CALL ABSOLUTE (BoardNuxn, DevHandle, DASErr , ADCl CGetDevHandle)

7-3

ADC-16 USER GUIDE - KADRead

Purpose Operating Function. Read a single A/D input value.

format DASErr = KADRead(DevHandle, Chan, Gain, ADValue) ;

entry PafamefefS DevHandl e = a unique identifier for a logical DAS device.

Chan = an integer variable that contains the number of the channel from which data
is to be read. For A/D frames, use Chan in the range of 0 to topchannel, where
topchannel = ((# of STA-EX8s * 8) + (8 - # of STA-EX8s)) - 1.

Gain = analog Gain code selection, according to the following table:

CODE GAIN

0 1
1 10
2 100

exit parameters ADValue = a variable containing the data. In Interpreted BASIC, this value must be
previously DIMensioned as an array of two integers. For QBASIC and QuickBASIC,
it is DIMensioned as a single long integer.

DASErr = integer variable (0 = No Error). return value

see also KDIRead, KDOWrite.

comments KADRead converts and reads a single A/D value according to the Chan and Gain
code parameters. The value returned is the absolute value of the fifteen least
significant bits of ADValue. If bit sixteen of ADValue is zero then multiply ADValue
by minus one.

+ + +

Examples

Interpreted BASIC xxxl0 DIM ADValue% (2)
=20 C?UL KADRead% (D e v H a n d l e , &an%, Gain%,ADValue% (0) , DASErr%)

QuickBASIC DIM ADVALUE AS LONG
DASErr% = =Read% (D e v H a n d l e , &an%, Gain%, ADVALUE)
IF DASErr% 0 0 THEN BEEP: STOP:

QBASIC DIM ADVALUE AS M N G
CALL ABSOLUTE (DevHandle , Chan, Gain, ADValue , DASErr, KADRead)

+ + +

7 - 4

CHAPTER 7: INDIVIDUAL CALL DESCRIPTIONS

Purpose

format

entry parameters

exit parameters

return value

see also

comments

Examples

Interpreted BASIC

QuickBASIC

QBASIC

KChkFrame

Frame Management. Check the parameters in a frame for validity.

D a s E r r = KChkE'rame(F r a m e H a n d l e , Type) ;

FrumeHundle = frame handle obtained from a previous KGetADFrame or
KGetDOFrame call.

Type = a word-parameter flag specifying the type of operation, as follows:

Type = 0 if checking a frame to be used in Sync Mode.
Type = 1 if checking a frame to be used in Interrupt Mode,

None.

DasErr = integer variable (0 = No Error).

KGetADFrame, KGetDOFrame, KFreeFrame.

KChkFrame ensures that frame parameters are within established bounds for the
specified type of operation. Specified operation may be Synchronous (initiated by
KSyncStart) or Interrupt driven (initiated by KIntStart). KChkFrame is often
used during development as a diagnostic tool; it is removed later.

* * *

X X X Z O CAU KChkFrame% (FrameHandle, Type%, DASErr%)

DASErr = KChkFrame%(FrameHandle, 0)
IF DASErr <> 0 THEN BEEP: STOP:

CAI& ABSOLUTE (FrameBandle, 0 , DASErr, KChkFrame)

* * *

7 - 5

ADC-16 USER GUIDE - KClearFrame

Purpose Frame Management. Clear all frame parameters to their default states.

fOf7llat DASErr = KClearFrame (FrameHandl e) ;

entry parameters FrameHandle = frame handle obtained from a previous KGetADFrame call.

exit parameters None.

return value DASErr = error number (0 = No Error).

see also KInitFrame.

comments KClearFrame performs a software re-initialization of all parameters within the
frame.

* * *
Examples

Interpreted BASIC ax10 C a l l KClearFrame% (A D H a n d l e , DASErr%)

QuickBASIC D A S E r r = KClearFrame% (ADHandle)
IF DASErr <> 0 THEN BEEP: STOP:

QBASIC CALZl ABSOLUTE (ADHandle, DasErr, KClearFrame)

* * *

7 - 6

CHAPTER 7: INDIVIDUAL CALL DESCRIPTIONS - KDASDevInit

Purpose General Driver Function. Initialize a DAS driver to a well-defined state.

format DASErr = KDASDevInit (DevHandle) ;

entry parameters DevHandle = a unique identifier for a logical DAS device obtained by a previous
call to ADClGetDevHandle.

exit parameters None.

return value DASEv = integer variable (0 = No Error).

see also ADC16DevOpen, KInitFrame.

comments Initially, KDASDevInit is not required since the mandatory call to ADC16DevOpen
effectively resets the Device parameters to their initial state. Later, KDASDevInit
may be called as required; for example, when your program has just finished a
synchronous acquisition and you want to do an Interrupt operation. By calling
KDASDevInit you effectively cancel all setups associated with the Synchronous
Mode. Calling KDASDevInit also stops all currently active operations.

Note that KDASDevInit initializes all driver parameters while KInitFrame
initialize the specified frame.

NOTE: RELAYS ARE SET TO NORMALLY CLOSED.

Examples

Interpreted BASIC - 0 CAWL KDASDevInit% (DevHandle, DASErr%)

QuickBASIC DASErr = KDASDevInit% (DevHandle)
IF DASErr% 0 0 THEN BEEP: STOP:

QBASIC CALL ABSOLUTE (DevHandle, DASErr, KDASDevInit)

7 - 7

ADC-16 USER GUIDE

Purpose

format

entry parameters

exit parameters

return value

see also

comments

Examples

Interpreted BASIC

QuickBASIC

QBASIC

KDlRead

Operating Function. Read a single Digital Input value.

DASErr = KDIRead(DevHandle, Chan, DIValue) ;

DevHandl e = a unique identifier for a logical DAS device obtained by a previous
call to ADC16GetDevHandle.

Chan = number for channel from which data is to be read (always 0 for ADC-16).

DIVulue = a variable that contains the data sample. In Interpreted BASIC, this
value must be previously DIMensioned as an array of two integers. For QBASIC
and QuickBASIC, it is DIMensioned as a single LONG integer. Bit0 = IPO; Bit1 = IP1.

DASErr = integer variable (0 = No Error).

KDOWrite.

KDIRead performs a single read operation from the digital input port.

+ + +

xxxl0 DIM DIValue%(2)
xxx20 CALL KDIRead% (Devtlandle, &an%, DIValue% (0) , DASErr%)

DIM DIValue AS LONG
DASErr = KDIRead%(DevFfandle, Chan, DIValue)
IF DASErr% 0 0 TEEN BEEP: STOP
PRINT "Digital Input value is : 'I: HEX$ (DIValue) :

DIM DIValue AS LONG
CALL ABSOLUTE (DevHandle, Chan, DIValue, DASErr, KDIRead)

7 - 8

CHAPTER 7 : INDIVIDUAL CALL DESCRIPTIONS - KDOWrite

Purpose Operating Function. Write a single Digital Output value.

format DASErr = - W r i t e (DevHandle , Chan , DOValue) ;

entry pafameters DevHandl e = a unique identifier for a logical DAS device obtained from a previous
call to ADC16GetHandle.

Chan = number of channel from which data is to be read (always 0 for ADC-16).

DOValue = location of a variable which contains the data sample. In Interpreted
BASIC, this value must be previously DIMensioned as an array of two integers. For
QBASIC and QuickBASIC, it is DIMensioned as a single LONG integer. Bit0 = OPO;
Bit1 = OP1; Bit2 = EX1; Bit3 = EX2; Bit4 = EX4. Digital Output on EXI, EX2, and EX4
is disabled if the ADC-16 is configured (see Chapter 2 Section 2.5 1 with STA-EX8
boards.

exit parameters None.

return value DASErr = integer variable (0 = No Error).

see also KGetDOCurVal.

comments KDOWrite outputs the specified DOVaIue contents.
KDOWrite writes all the digital outputs at the same time. All data is held in a
single long integer in QBASIC and QuickBASIC, or a two element integer array in
interpreted BASIC.

* * *
Examples

Interpreted BASIC -0 CALL KDOWrite% (D e v H a n d l e , man%, D O V a l u e % (0) , DASErr%)

QuickBASIC D O V a l u e = 12
D A S E r r = KDOWrite% (D o v H a n d l e , 0 , D O V a l u e)
IF D A S E r r <> 0 TEEN BEEP: STOP:

QBASIC CALL ABSOLUTE (F r d a n d l e , man, D O V a l u e , D A S E r r , K D O W r i t e)

* * *

7 - 9

ADC-16 USER GUIDE - KFormatChnGAry
Purpose Frame parameter. Reformats a user channel/gain array for use by the ADC-16

driver.

fOl777af DdSErr = WormatChnGAry (ChanGainArray) ;

entry parameters ChanGainArray = Channel Gain Array in the following form:

OFFSET TYPE DESCRIPTION
_ _ _ _ _ _ ~ ~ ~ ~~~~

0 Integer Number Of Enmes In This Table (N/2)
1 Integer Channel #1
2 Integer Gain Code For Channel #1
3 Integer Channel #2
4 Integer Gain Code For Channel #2

. Integer Channel # (N/2)
N Integer Gain Code For Channel # (N/2)

exit parameters None.

return value DASErr = integer variable (0 = No Error).

see also KRestoreChnGAry .
comments For certain A/D acquisition modes, the user can specify different gains for different

input channels using a channel/gain array. This array is passed to the driver using
KSetChnGAry. For the driver to accept this array, it must be in specific format; this
format is not achievable directly from BASIC.

mormatcbnGAry operates on the array that is actually passed to your BASIC
program, making it unreadable. To restore the array so that it is readable from
BASIC, use the complementary function KRestoreChnGAry.

* * *
Examples

Interpreted BASIC -0 CALL KFonnatChnGAry% (ChanGainArray (0) , DASErr%)

QuickBASIC DIM ChanGainArray(20) AS INTEGER

ChanGainArray(0) = 4 ' Number of Chan/Gain pairs
ChanGainArray (1) = 0 : ChanGaiduray (2) = 0 Chan 0 G a i n xl
ChanGainArray(3) = 1: ChanGainArray(4) = 1 ' Chan 1 Gain x10

ChanGainAtray(5) = 2: ChanGainArray(6) = 1 Chan 2 Gain x10
ChanGainArray(7) = 3: CbanGainArray(8) = 0 Chan 3 Gain xl
DASErr = WormatChnGAry% (ChanGainArray)
IF D A S E r r <> 0 THEN BEEP: STOP

QBASIC CAU ABSOLUTE (ChanGainArray () , DASErr, KFornratChnGAry)

* * *

7 - 1 0

CHAPTER 7: INDIVIDUAL CALL DESCRIPTIONS - KFreeFrame

Purpose Frame Management. Release a frame no longer needed.

fOrI7lat DASErr = WreeFrame (FrameHandle) :

entry parameters FrumeHundle = frame handle obtained from a previous KGetADFrame or
KGetDOFrame call.

exit parameters None.

return value DASErr = integer variable (0 = No Error).

see also KGetADFrame, KGetDOFrame, KChkFrame.

comments None.

* * *

Examples

Interpreted BASIC -0 CALL KFreeFramo% (F r d a n d l e , DASErr%)

QuickBASIC D A S E r r = KFreeFrame% (FrameHandle)
I F D A S E r r <> 0 !l" BEF.P: STOP:

QBASIC cAI;L ABSOLUTE (FrameHandle, DASErr , KFreeFrame)

* * *

7 - 11

ADC-16 USER GUIDE

Purpose

format

entry parameters

exit parameters

return value

see also

comments

KGetADFrame

Frame Management. Get a logical Frame for Analog Input (A/D) operations.

DASErr = K G o t A D F r a m e (DevHandl e , FrameHandl e) ;

DevHundle = device handle obtained from previous ADC16GetDevHandle call.

FrurneHandle = frame identification parameter for use when referencing parameters
in the frame or by operations that use the parameters in the frame.

DASErr = integer variable (0 = No Error).

KChkFrame, KFreeFrame.

KGetADFrame returns a handle to a parameter list referred to as a frame. Frame
parameters describe all aspects of a data acquisition/conversion process. Functions
are available to set, select, or enable these parameters. For a given device, each
frame is specific to a certain type of operation.

* * *

Examples

Interpreted BASIC -0 CALL K G e t A D F r a m e % (D e v H a n d l e , FramaHandle, D A S E r r %)

QuickBASIC D A S E r r = K G e t A D F r a m e % (D e v H a n d l e , F r a m e H a n d l e)
IF (D a s E r r 0 0) TEEN BEEP: STOP:

QBASIC CALL ABSOLUTE (D e v H a n d l e , FrameBandle, D A S E r r , K G e t A D F r a m e)

* * *

7 - 12

CHAPTER 7: INDIVIDUAL CALL DESCRIPTIONS

Purpose

format

entry parameters

exit parameters

return value

see also

comments

Examples

Interpreted BASIC

QuickBASIC

QBASIC

KGetChn

Frame Parameter. Obtain the Start Channel associated with a particular frame.

DASErr = K G e t C h n (F r a m e H a n d l e , Chan) :

FrumeHundle = frame handle obtained from previous KGetADFrame call.

Chan = integer variable to receive the Start Channel associated with FrumeHundle.

DASErr = integer variable (0 = No Error).

KSe tChn.

If the current frame is set up for multiple channels, the Start channel is returned.

+ + +

-0 CALL K G e t C b n % (FrameHandle, Chan%, DASErr%)

DASErr = K G e t C h n (F r a m e H a n d l e , man)
I F DASErr <> 0 THEN BEEP: STOP
PRINT "Analog Input channel is: 'I; man:

CALL ABSOLUTE (F r d a n d l e , Chan, D A S E r r , K G e t C h n)

+ + +

7 - 13

ADC-16 USER GUIDE - KGetDOCurVaI

PurpoSe Operating Function. Retrieve the Digital Output value currently assigned to the
output port of a Digital Output frame.

format DASErr = KGetDoCurVal(F r a m e H a n d l e , V a l u e) :

entry parameters FrameHandle = frame handle obtained from previous KGetDOFrame call.

exit parameters Value = long integer containing the current Digital Output value. Bit0 = OPO; Bit1 =
OP1; Bit2 = EX1; Bit3 = E X ; Bit4 = EX4.

return value DASEv = integer variable (0 = No Error).

see also KSetDOFrame, KDOWrite .

comments KGetDOCurVal reads a value up to 5 bits that is currently assigned to the digital
output port. This operation can take place while other background A/D operations
are in progress.

* * *

Examples

Interpreted BASIC xxx20 CALL KGetDOCurVal% (F r d a n d l e , V a l u e % (0) , DASErr%)

QuickBASIC DASErr = KGetDOCurVal% (FrameHandle, V a l u e)
IF DASErr <> 0 TaEN BEEP: STOP
PRINT "Current D i g i t a l O u t p u t value i s : 'I; HEX$ (V a l u e) :

QBASIC CALL ABSOLUTE (FrameHandle, V a l u e , DASErr , KGetDOCurVal)

* * *

7 - 1 4

CHAPTER 7 : INDIVIDUAL CALL DESCRIPTIONS - KGetDOFrame

Purpose Frame Management. Get a logical frame for Digital Output operations.

fOfInat DASErr = KGetDOFrame (DevHandle, FrameHandl e) ;

entry parameters DevHundle = device handle obtained from previous ADC16GetDevHandle call.

exit pafameters FrurneHundle = frame identification parameter for use when referencing parameters
in the frame or by operations that use the parameters in the frame. This parameter
equals Null (0) if an error condition occurs.

return value DASErr = integer variable (0 = No Error).

see also KChkFrame, KFreeFrame.

comments KGetDOFrame returns a frame handle, which identifies a parameter list referred to
as afiume. Frame parameters describe all aspects of a data acquisition/conversion
process. Functions are available to set, select, or enable these parameters. Each
frame is specific to a certain type of operation for a specific device.

* * *

Examples

Interpreted BASIC -0 CAU KGetDOFrame% (DevEIandle, FrameHandle, DASErr%)

QuickBASIC DASErr = KGetDOFrame% (D e v H a n d l e , FrameHandle)
IF FrameEIandle = 0 TEEN BEEP: STOP:

QBASIC CAU ABSOLUTE (DevEandle , F r d a n d l e , DASErr , KGetDOFrame)

* * *

7 - 1 5

ADC-16 USER GUIDE

Purpose

format

entry parameters

exit parameters

return value

see also

comments

KGetG

Frame Parameter. Get the Gain code for the frame.

DASErr = KGetG (F r a m e H a n d l e , G a i n) :

FrameHandle = frame handle obtained from previous KGetADFrame call.

Gain = integer variable containing the overall (applied to all Analog Input
channels) Gain code associated with the frame.

CODE GAIN

0 1
1 10
2 100

DASErr = integer variable (0 = No Error).

KSetG.

KGetG returns the global Gain code currently applied to all Analog Input channels.

* * *

Examples

Interpreted BASIC -0 CALL KGetG% (FrameHandle, Gain%, D A S E r r %)

QuickBASIC D A S E r r = KGetG% (F r d a n d l e , Gaincode)
IF DASErr <> 0 THEN BEEP: STOP
PRINT "The G l o b a l Gain Code is: 'I; GainCode:

QBASIC CALL ABSOLUTE (FramoHandle, Gain, D A S E r r , KGetG)

* * *

7 - 1 6

CHAPTER 7 : INDIVIDUAL CALL DESCRIPTIONS

KGetStartStopChn

Purpose Frame Parameter. Get the Start and Stop channels associated with a particular
frame.

format DASErr = KGetStartStopChn (FrameHandle , S t a r t C h n , S topChn) ;

entry parameters FrameHandle = frame handle obtained from previous KGetADFrame call.

exit parameters StartChn = integer variable containing the start channel associated with
FrameHandle. Limits = ((# of STA-EX8s * 8) + (8 - # of STA-EX8s)) - 1.

StopChn = integer variable containing the stop channel associated with
FrameHandle. Limits = ((# of STA-EX8s * 8) + (8 - # of STA-EX&)) - 1.

return value DASEn = integer variable (0 = No Error).

see also KSetStartStopChn.

comments None.

* * *
Examples

Interpreted BASIC xxx20 CALL KGetStartStopChn% (FrameHandle, StartChn%, StopChn%, DASErr%)

QuickBASIC DASErr = KGetStartStopChn% (FrameHandle, StartChn, StopChn)
IF DASErr <> 0 THEN BEEP: STOP

PRINT "The Channel Scan is "; StartChn; I' to "; StopChn:

QBAsIC CALL ABSOLUTE (FrameHandle, Start&, StopChn, DASErr,KGetStartStopChn)

* * *

7 - 1 7

ADC-16 USER GUIDE

Purpose

format

entry parameters

exit parameters

return value

see also

comments

Examples

Interpreted BASIC

QuickBASIC

QBASIC

KGetStartStopG

Frame Parameter. Obtain the start channel, stop channel and overall gain code
associated with a particular frame.

DASErr = KGetStartStopG(FrameHandle, S t a r t C h n , S t o p C h n , G a i n) ;

FrarneHandfe = frame handle obtained from previous KGetADFrame call.

StartChn = integer variable containing the start channel associated with
FrameHandIe . Limits = ((# of STA-EX8s * 8) + (8 - # of STA-EX8s)) - 1.

SropChn = integer variable containing the stop channel associated with
FrameHandle . limits = ((# of STA-EX8s * 8) + (8 - # of STA-EX8s)) - 1.

Gain = integer variable containing the overall gain code associated with
FrameHandle.

CODE GAIN

0 1
1 10
2 100

DASErr = integer variable (0 = No Error).

KSetStartStopG.

None.

+ + +

xxx20 CALL KGetStartStopG%(FrameHandle,StartChn%,StopChn%,Gain%,DASErr%)

DASErr = KGetStartStopG%(FrameHandle, StartChn, StopChn, Gaincode)
IF DASErr <> 0 THEN BEEP: STOP

P R I N T "Start: "; StartChn; 'I Stop: "; StopChn; It Gaincode: "; Gaincode:

CALL ABSOLUTE (FrameHandle, StartChn, StopChn, Gain, DASErr, KGetStartStopG)

+ + +

7 - 18

CHAPTER 7 : INDIVIDUAL CALL DESCRIPTIONS

KGetVer

Purpose General Driver Function. Get driver specification and driver revision levels.

fOfllXJt D d S E r r = KGetVer (D e v H a n d l e , p S p e c V e r , p D r i v e r V e r) :

entry parameters DevHundk = device handle obtained from previous ADC16GetDevHandle call.

exit parameters pSpecVer = an integer containing the version of driver specification to which a
particular driver adheres.

pDriverVer = an integer containing the revision level of a particular driver (that is,
1.00 being initial release).

return value DASErr = integer variable (0 = No Error).

see also None.

comments Both the pSpecVer and pDriverVer integers are returned in the same format. The
version number is represented in the form y.xx. The y value (major Rev. #) is in the
high byte of the integer, and the xx value (minor Rev. #) is contained in the low
byte. The major version number is the result of dividing the returned integer by 256,
while the minor version number is the result of taking the modulus of the returned
integer (pSpecVer MOD 256).

* * *
Examples

Interpreted BASIC - 0 CAU KGetVer% (DevHandle , p S p e c V e r % , p D r i v e r V e r % , DASErr%)

QuickBASIC DASErr = KGetVer% (DevEIandle, S p e c V e r , DrvVer)
IF DASErr <> 0 THEN BEEP: STOP:

QBASIC CALL ABSOLUTE (DevHandle , p S p e c V e r , pDriverVetr, DASErr, KGetVer)

* * *

7 - 19

ADC-16 USER GUIDE

Purpose

format

entry parameters

exit parameters

return value

see also

comments

KlnitFrame

Frame Management. Initializes the specified frame.

DASErr = KInitFrame (F r a m e H a n d l e) ;

FrumeHundle = frame handle obtained from previous KGetADFrame or
KGetDOFrame call.

None.

DASErr = integer variable (0 = No Error).

KDASDevInit.

KInitFrame initializes a frame to its initial default state. When a device is newly
opened, this Call is not required because ADC16DevOpen opens and reads the
configuration file, setting all the frame parameters to their initial state. KInitFrame
may be used any time an operation is not in process to reset the parameters to that
state.

KDASDevInit initializes all device and driver functions while KInitFrame
initializes only the current frame.

KinitFrame must be preceded by KGetADFrame or KGetDOFrame to obtain
FrameHandIe .

+ + +
Examples

Interpreted BASIC -0 CALL KInitFramo% (FrameHandle, DASErr%)

QuickBASIC DASErr = KInitFrame% (FrameHandle)
IF DASErr <> 0 'I" BEEP: STOP:

QBASIC CALL ABSOLUTE (FrameHandle, DASErr, KInitFrame%)

7 - 2 0

CHAPTER 7 : INDIVIDUAL CALL DESCRIPTIONS - KlntStart

Purpose Operating Functions. Start an operation and transfer samples using Interrupts.

fOm7at DASErr = KIntStart (FrameHandle) ;

entry parameters FrumeHundle = frame handle obtained from previous KGetADFrame call.

exit parameters None.

return value DASEv = integer variable (0 = No Error).

see also KIntStatus, KIntStop.

comments KIntStart stafis an A/D operation according to various parameters previously setup
through other appropriate functions. This function uses the PC and ADC-16
Intempt capabilities to transfer the acquired data to the PC memory at speeds
limited to approximately 16 Hz. This limitation occurs because of the maximum
sampling rate of the integrating A/D converter. Because these transfers occur in the
background, other DAS function may be performed simultaneously (for example,
KDIRead or KDOWrite).

Once this operation is started, use KIntStatus to monitor the progress of the
operation and KIntStop to terminate the operation prior to its normal finish (after
the requested number of samples is reached).

+ + +
Examples

Interpreted BASIC - 0 CALL KIntStart% (FrameBandle, DASErr%)

QuickBASIC DASErr = KIntStart% (F r d a n d l e)
IF DASErr <> 0 THEN BEEP: STOP:

QBASIC CALL ABSOLUTE (FrameBandle, DASErr, KIntStart)

7 - 2 1

ADC-16 USER GUIDE

Purpose

format

entry parameters

exit parameters

return value

see also

comments

Examples

Interpreted BASIC

QuickBASIC

QBASIC

KIntStatus

Operating function. Monitor the status and progress of an Interrupt operation
associated with a particular frame.

DASErr = KIntStatus (F r a m e H a n d l e , S t a t u s , Count) ;

FromeHundZe = frame handle obtained from previous KGetADFrame call.

Status = integer containing status information (1 = Interrupt operation active, 0 =
Interrupt operation idle).

Count = long integer to receive current sample transfer count (samples transferred
so far).

DASEv = integer variable (0 = No Error).

KIntStart, KIntStop.

KIntStatus monitors the status of a previously started Interrupt operation using
KIntStart. Use KIntStop to terminate the Interrupt operation prior to its normal
completion (when the requested number of samples is reached).

xxxl0

Do

CALL KIntStatus% (Framegandle, Status%, Index% (0) , DASErr%)

DASErr = KIntStatus%(FrameHandle, Status, Count)
IF D A S E r r <> 0 THEN BEEP: STOP

LOOP WHILE STATUS <> 0 ' Wait u n t i l status i s f a l s e :

CALL ABSOLUTE (FrameHandle, Status, Count, DASErr,KIntStatus)

* * *

7 - 22

CHAPTER 7 : INDIVIDUAL CALL DESCRIPTIONS - KlntStop

Purpose Operating function. Terminate a background Interrupt operation.

foflnat DASErr = XIntStop(F r a m e H a n d l e , S t a t u s , Count) :

entry parameters FrumeHundle = frame handle obtained from previous KGetADFrame call.

exitparameters Status = integer to receive status information (1 = active, 0 = idle).

Count = user long integer to receive current sample transfer count (samples
transferred so far).

return value DASErr = integer variable (0 = No Error).

see also KIntStart, KIntStatus.

comments KIntStop is used whenever you wish to prematurely terminate an Interrupt
operation initiated using KIntStart. If an Interrupt operation is in process, i t is
stopped and the number of transferred samples is returned in Count ; otherwise this
function does nothing.

* * *
Examples

Interpreted BASIC xrurl0 CALL XIntStop% (F r d a n d l e , S t a t u s % , Count, DASErr%)

QuickBASIC DASErr = XIntStop% (FrameHandle, S t a t u s , Count)
IF DASErr <> 0 THEN BEEP: STOP:

QBASIC CALL ABSOLUTE (FrameBandle, S t a t u s , Count, DASErr, KIntStop)

* * *

7 - 23

ADC-16 USER GUIDE - KMoveDataBuf

Purpose Memory Management. Move N bytes from one memory region to another.

format DASErr = KWoveDataBuf (DestSeg, DestOff, SrcSeg, ScrOff, Samples) :

entry parameters DestSeg = integer Segment of the destination address.

DestOff = integer Offset of the destination address.

SrcSeg = integer Segment of the source address.

SrcOff = integer Offset of the source address.

Samples = integer for the number of bytes to transfer.

exit parameters None.

return value DASErr = integer variable (0 = No Error).

see also KSetBuf.

comments KMoveDataBuf allows Interpreted BASIC users to transfer data to/from an internal
buffer (not easily accessible from BASIC) to/from a BASIC user array. You would
normally use this Call after a KIntStart operation ends.

Refer to the examples below for steps on how to transfer the first 100 A/D samples
from an internal buffer to a BASIC array. Note that the internal buffer at &H8000:0
was used to acquire data in a previous A/D operation.

If the Destination or Source Buffer are DIMensioned arrays, the Segment value
should be set to &HFFFF.

* * *
Examples

Interpreted BASIC DIY BUF% (100)

BUFSEG% = VARsEG(BUF% (0)) 'Segment of Basic array
BUFOFS% = VARPTR(BUF% (0)) 'Offset of Basic Array

IF DASErr% 0 0 THEN BEEP: STOP
CALL KMoveDataBuf%(BUFSEG%,BUFOFS%, hH8000,0,100,DASErr%)

7 - 2 4

CHAPTER 7 : INDIVIDUAL CALL DESCRIPTIONS

Purpose

format

entry parameters

exit parameters

return value

see also

comments

Examples

Interpreted BASIC

QuickBASIC

QBASIC

KRestoreChnGAry

Frame parameter. Restore a user channel/gain array previously modified by
KFormatChnGAry .

DASErr = K R e s t o r e C h n G A r y (ChanGain (0)) ;

ChanGain(0) = array of Channel/Gain pairs to be restored.

ChanGaidO) = restored array of Channel/Gain pairs.

DASErr = integer variable (0 = No Error).

KFormatChnGAry.

KRestoreChnGAry restores the user's channel/gain array previously modified by
KFormatChnGAry such that it is readable again from BASIC.

* * *

-0 CAU K R e s t o r e C h n G A r y % (ChanGain% (0) , D A S E r r %)

DIM ChanGain(20) AS INTEGER

D A S E r r = KRestoreQmGAry% (ChanGain (0))
IF D A S E r r % 0 0 THEN BEEP: STOP

CALI, ABSOLUTE (ChanGain () , D A S E r r , XRestorekG.?uy)

* * +

7 - 25

ADC-16 USER GUIDE

KSet Buf

purpose

format

entry parameters

exit parameters

return value

see also

comments

Memory Management. Assigns a data buffer and number of samples to a particular
frame.

Interpreted BASIC:
DASErr = KSetBuf (FrameHandle, B u f S e g , B u f O f f , Samples):

QuickBASIC & QBASIC:
DASErr = KSetBuf (FrameHandle, B u f A d d r , S a m p l e s) :

FrameHandle = frame handle obtained from previous KGetADFrame call.

Bufseg = integer Segment value of a memory area to be assigned to the frame (for
Interpreted BASIC only). If using an array created by DIMension, use the parameter
DutuSeg% instead of BufSeg. DutuSeg is a variable declared in the initialization
subroutine; it indicates that BASIC's local data-segment should be used.

BufOff = integer Offset value of a memory area to be assigned to the frame (for
Interpreted BASIC only).

BufAddr = long integer address value of memory area to be assigned to the frame
(for QuickBASIC and QBASIC only).

Samples = long integer specifylng the number of samples associated with the data
buffer. The Samples parameter is not used in the ADC-16. The number of samples is
determined by the start-stop channels or a channel-gain array.

None.

DASErr = integer variable (0 = No Error).

KSetChnGAry

KSetBuf assigns the address of a memory location and the number of samples to
the specified frame. For Interpreted BASIC, the memory address is passed as
absolute Segment and Offset value (for example, &H8000:0).

* * *
Examples

Interpreted BASIC Buff O f f %=VARpm (Buf f er% (0)) : Count%=O ' N o t u s e d .
-0
xx30 I F DASErr% 0 0 THEN m: STOP

CALL KSetBuf% (FramaHandle,DataSeg%,BuffOff%, Count%, D a s E r r %)

QuickBASIC D I M B u f f e r (100) AS INTEGER

DASErr = KSetBuf% (FrameHandle,Buffer(O) , A d d r e s s , Samples (0))
I F DASErr <> 0 TBEN BEEP: STOP

QBAsIC CALL ABSOLUTE (FrannaHandle, B u f f e r () , Samples, DASErr , KSetBuf)

* * *

7 - 2 6

CHAPTER 7 : INDIVIDUAL CALL DESCRIPTIONS - KSetChn

Purpose Frame Parameter. Specify a channel for single channel operations.

format DASErr = K S e t C h n (F r a m e H a n d l e , Chan) :

entry parameters FrameHundle = frame handle obtained from previous KGetADFrame call.

Chun = integer variable containing a channel number. For A/D frames, use Chan in
the range of 0 to topchannel, where topchannel = ((# of STA-EX8s * 8) + (8 - # of
STA-EX8s)) - 1. For Digital I/O, Chan is always 0.

exit parameters None.

return value DASEn = integer variable (0 = No Error).

see also KSetStartStopChn.

comments KSetStartStopChn is used to specify a range of channels for KSyncStart or
KIntStart operations. For instance, several A/D channels may be monitored
sequentially by specifying independent Start and Stop Channels. If StartChn = 2
and StopChn = 4, then samples will be taken from Channels 2,3,4.

KSetChn may be used to reset the start channel number after KSetStartStopChn
has established a channel range.

* * +
Examples

Interpreted BASIC -0 CALL KSetChn% (F r a m e b d l e , Chan%, DASErr%)

QuickBASIC DASErr = KSetChn% (FrameHandle, Chan)
IF -Err <> 0 TEEN BEEP: STOP:

QBASIC cAI;G ABSOLUTE (F r d a n d l e , man, DASErr, KSetChn)

* * *

7 - 27

ADC-16 USER GUIDE - KSetCh nGAry
Purpose Frame Parameter. Insert a channel gain list into a frame.

format D A S E r r = K S e t C h n G A r y (C h a n G a i n A r r a y) :

entry parameters ChmGainArray = Channel Gain Array in the following form:
OFFSET TYPE DESCRIPTION

0 Integer Number Of Enmes In This Table N/2)
1 Integer Channel #1
2 Integer Gain Code For Channel # 1
3 Integer Channel #2
4 Integer Gain Code For Channel #2

. Integer Channel # (N/2)
N Integer Gain Code For Channel # (32)

exit parameters None.

return value DASEv = integer variable (0 = No Error).

see also KGetChnGAry.

comments For certain A/D acquisition modes, you may specify different gains for different
input channels using a channel/gain array. This array is passed to the driver using
KSetChnGAry . The driver accepts this array only when it is in the format shown
above, which is not achievable from BASIC; BASIC does not support byte-sized
variables. From BASIC, always use KFormatChnGAry before KSetChnGAry , as
shown in the examples below. When no longer needed by the driver, this array may
restored to its BASIC format using KRestoreChnGAry . Using KSetChnGAry ,
you may specify an arbitrary sequence of channel/gain pairs. Any random order of
channels and gains is allowable, including sampling the same channel sequentially
at different gains. The channel-gain array may contain up to 256 channel/gain
entries.

* * *
Examples

Interpreted BASIC -0 CALL KSetChnGAry% (ChanGainArray% (0) , DASErr%)

QuickBASIC D I M ChanGain(20) AS INTEGER

ChanGain(0) = 4 Number of -/Gain pa i r s
ChanGain(1) = 0: ChanGain(2) = 0 Chan 0 G a i n Code 1
ChanGain(3) = 1: ChanGain(4) = 1 ' Chan 1 G a i n Code 2
ChanGain(5) = 2: ChanGain(6) = 1 ' Chan 2 Gain Code 2
ChanGain(7) = 3: ChanGain(8) = 0 ' Chan 3 Gain Code 1
DASErr = KSetChnGAry% (FrameHandle, ChanGain (0))
IF D A S E r r <> 0 THEN BEEP: STOP

QBASIC CAU ABSOLUTE (ChanGain () , D A S E r r , K S e t C h n G A x y)

* * *

7 - 28

CHAPTER 7: INDIVIDUAL CALL DESCRIPTIONS - KSetG

Purpose Frame Parameter. Set the overall analog input gain.

fUfI77at DASErr = K S e t G (F r a m e H a n d l e , G a i n) :

entry parameters FrameHandle = frame handle obtained from previous KGetADFrame call.

Gain = integer which sets the overall gain code (0,1, or 2) associated with
FrarneHandIe.

CODE GAIN

0 1
1 10
2 100

exit parameters None.

return value DASErr = integer variable (0 = No Error).

see also KGetG, KStartStopG, KSetChnGAry.

comments KSetG sets the analog gain for a specified frame.

KSetStartStopG sets the start and stop channel numbers and the gain for a
specified frame. This function is an expedient way to combine KSetStartStopChn
and KSetG.

* * *
Examples

Interpreted BASIC -0 CALL KSetG% (F r a m e H a n d l e , Gain%, DASErr%)

QuickBASIC DASErr = K S e t G % (F r a m e I I a n d l e , 0) ’ S e t G l o b a l Gain t o x l
IF DASErr <> 0 THEN BEEP: STOP:

QBASIC CALL ABSOLUTE (F r a m e B a n d l e , G a i n , DASErr, KSetG)

* * *

7 - 29

ADC-16 USER GUIDE

Purpose

format

entry parameters

exit parameters

return value

see also

comments

Examples

Interpreted BASIC

QuickBASIC

QBASIC

KSetStartStopC h n

Frame Parameter. Set the Start and Stop channels associated with a particular
frame.

DASErr = KSetStartStopChn (FrameHandle, S t a r t C h a n , S t o p C h a n) ;

FrumeHundle = frame handle obtained from previous KGetADFrame call.

SturrChun = integer start channel to be associated with FrameHandle. Limit = ((# of
STA-EX8s * 8) + (8 - # of STA-EX8s)) - 1.

StopChun = integer stop channel to be associated with FrameHandle. Limit = ((# of
STA-EX~S * 8) + (8 - # of STA-EX8s)) - 1.

None.

D A S E n = integer variable (0 = No Error).

KGetStartStopChn, KSetChn.

KSetChn is used to specify a channel for a single channel operation. As an example,
KSetChn would typically be used to specify the channel for KADRead .

KSetStartStopChn is used to specify a range of channels for KSyncStart or
KIntStart operations. For instance, several A/D channels may be monitored
sequentially by specifying independent Start and Stop Channels. If StartChn = 2
and StopChn = 4, then samples will be taken from Channels 2,3,4.

KSetChn may also be used to reset the start channel number after
KSetStartStopChn has established a channel range.

* * *

xxx20 CALL KSetStartStopChn% (FrameHandle, StartChan%, StopChan%, DASErr%)

DASErr = KSetStartStopChn% (FrameHandle, 0, 3)
IF DASErr <> 0 THEN BEEP: STOP:

CALL ABSOLUTE(FrameHandle,StartChan,StopChan,DASErr,KSetStartStopChn)

* + *

7-30

CHAPTER 7 : INDIVIDUAL CALL DESCRIPTIONS

KSetStartStopG

Purpose Frame Parameter. Specify the start channel, stop channel and overall gain for a
particular frame.

format DASErr = KSetStartStopG(FrarneHandle, S t a r t C h a n , S t o p C h a n , G a i n) ;

entry parameters FrumeHundle = frame handle obtained from previous KGetADFrame call.

SturtChun = the start channel associated with FrameHandle. Limit = ((# of STA-
EX8s * 8) + (8 - # of STA-EX~S)) - 1.

StopChan = the stop channel associated with FrameHandle. Limit = ((# of STA-EX&
* 8) + (8 - ## Of STA-EX&)) - 1.

Gain = the overall gain code associated with an operation.

CODE GAIN

0 1
1 10
2 100

exit parameters None.

return value DASErr = integer variable (0 = No Error).

see also KGetStartStopG.

comments KSetG sets the analog gain for a specified frame.

KSetStartStopG sets the start and stop channel numbers and the gain for a
specified frame. This function is an expedient way to combine KSetStartStopChn
and KSetG.

KSetChnGAry selects an arbitrary sequence of channel sampling with selectable
gain settings. The Call receives an array of channel numbers and gain settings, and
it scans through the list sequentially. Therefore, any random order of channels and
gain settings is allowable, including sampling the same channel sequentially at
different gain settings. All the conceptual rules that combined with
KSetStartStopChn apply to this Call.

* * *
Examples

Interpreted BASIC xxx20 CALL KSetStartStopG% (FrameHandle, StartChan%, StopChan%, Gain%, DASErr%)

QuickBASIC DASErr = KSetStartStopG% (FrameHandle, 0, 3, 0)
IF DASErr <> 0 TEEN BEEP: STOP:

QBAsIC CW ABSOLUTE (FrameHandle, StartChan, StopChan, Gain, DASErr, KSetStartStopG)

* * *

7 - 31

ADC-16 USER GUIDE

Purpose

format

entry parameters

exit parameters

return value

see also

comments

Examples

Interpreted BASIC

QuickBASIC

QBASIC

KSyncStart

Operating Function. Starts a synchronous A/D operation.

DASErr = K S y n c S t a r t (FrameHandle) ;

FrumeHundle = frame handle obtained from previous KGetADFrame call.

None.

DASErr = integer variable (0 = No Error).

KIntStart.

Starts a synchronous A/D operation. KSyncStart takes a frame handle as an input
parameter. This handle is obtained by a KGetADFrame function and therefore
defines the type of operation.

KSyncStart is a foreground operation and does not return until the specified
number of acquisitions/conversions are complete. Therefore, no complimentary
status or stop functions are required.

Prior to making this call, the user should have already specified the start and stop
channels, buffering, gain, etc.

* * *

xxx20 CALL K S y n c S t a r t % (F r d a n d l e , D A S E r r %)

DASErr = K S y n c S t a r t % (FrameBandle)
IF DASErr <> 0 THEN BEEP: STOP:

CALL ABSOLUTE (FramaHandle, DASErr, K S y n c S t a r t)

7-32

CHAPTER 8

WRITE:

REGISTER = LEVEL I/O MAPS

X X X X X X X X

8.1 INTRODUCTORY INFORMATION
The AX-16 is programmable at the register level using I/O (Input/Output) instructions. In BASIC,
the 1 / 0 instructions are INP (X) and OUT X, Y . In Assembly and most other high-level
languages, the 1/0 instructions are similar; for example, the Assembly Language equivalents are IN
AL,DX and OUT DX,AL .

As an aid to register-level programming, this chapter describes each ADC-16 register in terms of
function, address, bit structure, and bit functions. The chapter does not go into any programming
detail since it is likely to vary too greatly from person to person.

8.2 I/O REGISTER ADDRESS MAP
The AX-16 uses four consecutive Base Addresses in the computer I/O space, as shown in the
following table. Note that in the table R = read, and W = write.

LOCATION FUNCTION TYPE

Base Address +O

Base Address + 1
Base Address +2
Base Address +3 Status Register

A/D Data High Byte
Start m
A/D Data Low Byte
Mux & Gain Register

Control Register

R
W
R
R/W*
W
R*

* Cleared at power-up.

8.3 AID REGISTERS (BASE ADDRESS +O & +I)
While writing to Base Address +O initiates an A/D conversion, neither Base Address +O nor Base
Address +1 will accept data. Both registers are read-only. However, writing to Base Address +O
initiates an A/D conversion. Data format of the two A/D Data Byte Registers at Base Address +1 and
+2 is as follows:

Base Address +O
BIT: D7 D6 D5 D4 D3 D2 D1 DO

A write does not register, but it initiates an A/D conversion.

8 - 1

ADC-16 USER GUIDE

READ:

BIT: D7 D6 D5 D4 D3 D2 D1 DO

OIP B14 813 B12 B11 B10 B9 88

READ:

When D6 of the Control Register = 1: O/P = 1 input is Overrange; O/P = 0 input is In
Scale.

87 B6 B5 84 B3 82 B1 BO I

When D6 of the Control Register = 0: O/P = 1 data is Positive; O/P = 0 data is
Negative.

READNRITE:

\

B8-B 14 = Data bits.

G1 GO CH4 CH2 CH1 EX4 EX2 EX1

Data is readable from the A/D converter only when an A/D conversion is not in process. Always
check the A/D BUSY Bit in the Status Register (Base Address +3) before initiating a conversion or
reading the result.

8.4 MUX & GAIN REGISTER (BASE ADDRESS +2)
The MUX & Gain Register is a read/write register that clears to zeroes on power-up or whenever
RESET is asserted. Format of the data is as follows:

Base Address +2
BIT: D7 D6 D5 D4 D3 D2 D1 DO

G1 GO GAIN

0 0 1
0 1 10
1 0 100

8 - 2

CHAPTER 8: REGISTER-LEVEL I/O MAPS

WRITE:

CH1-CH4 These bits control the multiplexer, and they determine the channel to be
connected to the A/D input amplifier as follows:

INTE OIP OP1 OPO INT4 INT2 lNTl INTO

CH4 CH2 CH1 CHANNEL

0 0
1 1
0 2
1 3
0 4
1 5
0 6
1 7

EX1-EX4 These bits select the STA-EXg(s) multiplexer channel. (See Chapter 2 for
more details.) If the ADC-16 is not used with an STA-EX8, these bits may be used as
general purpose digital outputs.

NOTE: To allow the input amplifier time to settle, select the channel and gain about 50
microseconds before an A/D conversion is initiated. If you are programming in
Interpreted BASIC, the software delays will more than exceed the required amplifier
settling time. However, if you are using a compiled language or Assembly, program a
small delay loop into the code for maximum accuracy.

8.5 CONTROL REGISTER (BASE ADDRESS +3)

OP = OverrangePolady Bit Select. If set high (l), overrange data is returned in D7 of
the A/D High Register @ase Address + 0). If this bit is cleared (0), polarity data is be
returned in D7 of the A/D High Register.

OPO & OP1 = Digital Output. These bits also drive ADC-16 relays RELl (OP1) and
RELO (opoj.

8 - 3

ADC-16 USER GUIDE

READ:

I"O-INT4 = Interrupt Level Select. Avoid using a level already assigned to another I/O
device. Interrupts are chosen as follows:

BUSY IRQ IP1 IPO INT4 INT2 lNTl INTO

INT4 INT2 INTl INTO INTERRUPT LEVEL

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Disabled
Disabled

Level 2 (XT, AT)
Level 3 (XT, AT)
Level 4 (XT, AT)

Level 5 (AT)
Disabled

Level 7 (XT, AT)
Disabled

Level 9 (AT)
Level 10 (AT)
Level 11 (AT)
Level 12 (AT)

Disabled
Disabled

Level 15 (AT)

NOTE: INTE, OPO, and OP1 bits are write only. It would be prudent to keep a variable that
contains the status of these bits. These bits could then be read to determine present
status; they should be updated before they are written to the control register. Also, set
OPO and OP1 to 0 during initialization, to ensure that the variable reflects the true state of
the bit.

8.6 STATUS REGISTER (BASE ADDRESS +3)
The Status Register is a read-only register that provides information on the operation and
configuration of the A/D in the ADC-16. Writing to the Status Register address clears the ADC-16
interrupt request and provides the means of acknowledging the ADC-16 interrupt and re-enabling it.
The format is as follows:

Base Address +3
BIT: 07 D6 D5 D4 D3 D2 D1 DO

BUSY = A P BUSY. This bit reflects the state of the 4/D converter. If BUSY = 1, then
the AD is performing a conversion. If BUSY = 0, the N D is ready to begin an &D
conversion or to read data.

IRQ = Interrupt Request. Generated even if bus interrupts are disabled (INTE bit of the
Control Register = 0). If this bit equals 1, the AD is finished and data is ready. Read
the Status Register to clear the IRQ bit.

8-4

CHAPTER 8: REGISTER-LEVEL I/O MAPS

IPO & IP1= Digital Inputs.

INTO-INT4 = Interrupt Level Select. Reflects the Intempt Level as specified in the
Control Register.

8.7 TYPICAL PROGRAMMING SEQUENCE
A sample programming sequence for performing an A/D conversion on the ADC-16 is as follows:

1. Write to MUX/Gain Register (Base Address +2) to select desired channel and gain.

2. Poll the Status Register (read Base Address +3) to check that the D7 (BUSY) bit is zero.

3. Start A/D conversion by writing any data to Base Address +O.

4. Poll the Status Register (read Base Address +3) until D7 (BUSY) bit is zero.

5. Set D6 in the Control Register (write Base Address +3) to 1 to read overrange.

6. Read the A/D high byte (read Base Address +O).

7. If Overrange Bit D7 is high, an input-overload condition exists.

8. Clear D6 in the Control Register (read Base Address +3) to 0 to read polarity.

9. Read the A/D high byte and sign (read Base Address +O).

10. Read the A/D low byte (read Base Address +l).

11. Assemble high/low byte data into one signed data word (16-bit integer).

12. Repeat cycle for another conversion, gain, channel, etc.

Since the A/D converter performs a conversion between Steps 3 and 4 of the above sequence, there is
always a delay of about 50 milliseconds between these two steps before BUSY goes low and the
conversion is completed. An example BASIC program that performs these steps is in the following
section.

8.8 BASIC EXAMPLE PROGRAM
10 'REG.BAS", a 'neat save trick: type EDIT 10, F4, CR
20FALSE=O:TRUE=NOT FALSE
30CHAN%=O start on channel0; gain = 1
40 DONE%=FALSE
50WHILE ((INP(&H313) AND &H80) = &H80 'check for not busy
60 WEND
70WHILE (NOT DONE%)
80 OUT hH312, CHAN%
90 OUT hH310, 0 start conv
100 WHILE ((INP(&H313) AND &H80) = bH80)
110 WEND
120 OUT &H313, &H40 'set overrange ON
130 OVR%=INP (&H310) read overrange bit
140 IF(OVR% AND &H80) = &H80 THEN PRINT "OVER RANGE on Channel 'I; CHAN%
150 OUT &H313, 0 'reset overrange bit to polarity
160 LOW=INP (hH311)
170 HI = INP(CH310)

8-5

ADC-16 USER GUIDE

180 HI = (HI AND LH7F)
190 RDG = (256 * HI) OR LOW
200 PRINT "reading = lt; (RDG / 32767) * 5
210 FOR DELAY = 0 TO 5000; NEXT
220 CHAN%=CHAN%+8
230 IF CHAN% > 65 THEN DONE%=TRUE
240 WEND

...

8 - 6

CHAPTER 9

CALIBRATION

9.1 CALIBRATION INTERVAL
Periodic re-calibration of the ADC-16 is necessary for accuracy, with the interval of recalibration based
on type of service. For example, an environment with frequent large changes of temperature and/or
vibration would call for a 3-month re-calibration interval, while laboratory or office conditions would
call for six months to one year.

9.2 CALIBRATION PROGRAM
Your Distribution Software contains the calibration program ADCZ6CAL.EXE is provided to step you
through the calibration process. To run ADClGCAL.EXE, log to the ADC-16 directory and type
ADC16CAL . From the opening menu, select as follows:

Change Base Address - To find out how to reset the Base Address Switch. The default setting is

Main Menu - To access the calibration routines. These routines consist of calibrating the 1 mA
source (Set 1 mA Source) and calibrating the A/D converter (Cal AID 1. There is also a utility
program (select A/D Utility); this program allows a check of the ADC-16 configuration, and it
performs A/D measurement, and controls the DI and DO.

ADC-16 lnfo - To find out more about the ADC-16.

300h (768 decimal).

9.3 REQUIRED TEST EQUIPMENT
Calibration of the ADC-16 requires the following equipment:

Set 1 mA Source Procedure

STA-EX8 and C-1800 cable

DMM (Keithley Instruments 196 or equivalent)

lK, 0.1%, 1/4 watt (min) resistor (optional)

A/D Calibration Procedure

STA-EX8 and C-1800 cable

DC Voltage Calibrator, EDC type or equivalent

More test equipment specifications are given in the ADC-16 Info screen. ...
9 - 1

CHAPTER 10

FACTORY RETURNS

Before returning any equipment for repair, please call 508/880-3000 to notify Keithley MetraByte’s
technical service personnel. If possible, a technical representative will diagnose and resolve your
problem by telephone. If a telephone resolution is not possible, the technical representative will issue
you a Return Material Authorization (RMA) number and ask you to return the equipment. Please
reference the RMA number in any documentation regarding the equipment and on the outside of the
shipping container.

Note that if you are submitting your equipment for repair under warranty, you must furnish the
invoice number and date of purchase.

When returning equipment for repair, please include the following information:

1. Your name, address, and telephone number.

2. The invoice number and date of equipment purchase.

3. A description of the problem or its symptoms.

Repackage the equipment. Handle it with ground protection; use its original anti-static wrapping, if
possible.

Ship the equipment to

Repair Department

440 Myles Standish Boulevard
Taunton, Massachusetts 02780

Telephone 508/880-3000
Telex 503989

FAX 508/880-0179

Be sure to reference the RMA number on the outside of the package!

10- 1

Appendix A

Summary Of Error Codes

The following list contains the ADC-16 Error Codes with corresponding numbers and definitions.

DAS Shell Codes
The following code numbers signify the errors you might encounter after making DAS Shell Calls.

Error 6000: Bad Configuration File

Returned if the Device Configuration File has an undefined word or file is corrupt.

Error 6001 : Bad Base Address

Returned if the specified Base Address is out of range. This error is typically returned during the
initialization process.

Error 6004: Error Opening Configuration File.

Returned when Device Configuration does not open.

Error 6005: Illegal Channel Number.

Returned when the specified channel number is out of range.

Error 6006: Illegal Gain

Returned if the specified Gain is out of range.

Error 6009: Wrong Version

Returned in response to an attempt to initialize a device with an incorrect version number.

Error 600A: Configuration Not Found

Returned when the specified Device Configuration File could not be found.

A - 1

ADC-16 USER GUIDE

Error 6000: Bad Handle

Illegal handle for a frame.

Error 7000: No Board Name

No Board name was specified.

Error 7001: Bad Board Name

An illegal board name was specified. Legal name is ADC16.

Error 7002: Bad Board Number

An illegal board number was given. Specify 0 or 1.

Error 7003: Bad Base Address

An illegal base address was specified. Valid base addresses range from 200 Hex to 3F8 Hex.

Error 7005: Bad Interrupt Level

An illegal Interrupt level is specified. Valid interrupt levels are 2,3,4,5,7,9,10,11, or 15.

Error 7006: Bad Number of EXP's

Specify 1 through 8 EXP's.

Error 7013: Bad Exp Number

Specify a number between 1 and 8.

Error 7015: Bad Number of EXP GP's

Specify a number between 1 and 8.

Error 7018: No Board Name

Specify a number between 0 and 7.

A - 2

Appendix A: Summary Of Error Codes

Core Codes
The following code numbers signify the errors you might encounter after making Core Driver Calls.
No explanations appear where the error title is self-explanatory.

Error 00: No Error

No error.

Error 8001: Not Supported

Indicates that the specified function is not supported.

Error 8002: No Such Function

Indicates that the specified function is out of bounds.

Error 8003: Illegal Card Number

Indicates that the specified board number is not valid.

Error 8004: Bad Error

Indicates that the error number is not valid.

Error 8005: No Board

Indicates that the specified board is not at the configured address.

Error 8006: A/D Not Initialized

Indicates that the A/D Converter is not initialized.

Error 8008: Digital Input Not Initialized

Error 8009: Digital Output Not Initialized

Error 801A: Interrupts Active

A - 3

ADC-16 USER GUIDE

Error 8020: Bad Revision

Specified DAS revision number is not valid.

Error 8021: Error Resource Busy

Illegal handle for frame.

Error 8022: Unknown Error Number

...

A - 4

	TOC:
	w/o:

